Suppr超能文献

尽管基态存在异质性,但细菌光敏色素的光异构化过程是均匀进行的。

Bacteriophytochrome Photoisomerization Proceeds Homogeneously Despite Heterogeneity in Ground State.

作者信息

Wang Cheng, Flanagan Moira L, McGillicuddy Ryan D, Zheng Haibin, Ginzburg Alan Ruvim, Yang Xiaojing, Moffat Keith, Engel Gregory S

机构信息

Department of Chemistry, The James Franck Institute, Institute for Biophysical Dyanmics, The University of Chicago, Chicago, Illinois.

Graduate Program in Biophysical Science, The James Franck Institute, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois.

出版信息

Biophys J. 2016 Nov 15;111(10):2125-2134. doi: 10.1016/j.bpj.2016.10.017.

Abstract

Phytochromes are red/far-red photoreceptors that are widely distributed in plants and prokaryotes. Ultrafast photoisomerization of a double bond in a biliverdin cofactor or other linear tetrapyrrole drives their photoactivity, but their photodynamics are only partially understood. Multiexponential dynamics were observed in previous ultrafast spectroscopic studies and were attributed to heterogeneous populations of the pigment-protein complex. In this work, two-dimensional photon echo spectroscopy was applied to study dynamics of the bacteriophytochromes RpBphP2 and PaBphP. Two-dimensional photon echo spectroscopy can simultaneously resolve inhomogeneity in ensembles and fast dynamics by correlating pump wavelength with the emitted signal wavelength. The distribution of absorption and emission energies within the same state indicates an ensemble of heterogeneous protein environments that are spectroscopically distinct. However, the lifetimes of the dynamics are uniform across the ensemble, suggesting a homogeneous model involving sequential intermediates for the initial photodynamics of isomerization.

摘要

光敏色素是广泛分布于植物和原核生物中的红/远红光感受器。藻胆素辅因子或其他线性四吡咯中双键的超快光异构化驱动其光活性,但其光动力学仅得到部分理解。在之前的超快光谱研究中观察到多指数动力学,并归因于色素-蛋白质复合物的异质群体。在这项工作中,二维光子回波光谱被用于研究细菌光敏色素RpBphP2和PaBphP的动力学。二维光子回波光谱可以通过将泵浦波长与发射信号波长相关联,同时分辨集合中的不均匀性和快速动力学。同一状态内吸收和发射能量的分布表明存在光谱上不同的异质蛋白质环境集合。然而,动力学的寿命在整个集合中是均匀的,这表明存在一个涉及异构化初始光动力学的连续中间体的均匀模型。

相似文献

1
Bacteriophytochrome Photoisomerization Proceeds Homogeneously Despite Heterogeneity in Ground State.
Biophys J. 2016 Nov 15;111(10):2125-2134. doi: 10.1016/j.bpj.2016.10.017.
2
The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome.
J Phys Chem Lett. 2020 Aug 6;11(15):5913-5919. doi: 10.1021/acs.jpclett.0c01394. Epub 2020 Jul 13.
3
Ultrafast Photoconversion Dynamics of the Knotless Phytochrome Cph2.
Int J Mol Sci. 2021 Oct 2;22(19):10690. doi: 10.3390/ijms221910690.
4
Temperature-scan cryocrystallography reveals reaction intermediates in bacteriophytochrome.
Nature. 2011 Oct 16;479(7373):428-32. doi: 10.1038/nature10506.
5
Elucidating the Molecular Mechanism of Ultrafast Pfr-State Photoisomerization in Bathy Bacteriophytochrome PaBphP.
J Phys Chem Lett. 2019 Oct 17;10(20):6197-6201. doi: 10.1021/acs.jpclett.9b02446. Epub 2019 Oct 2.
7
Distinct classes of red/far-red photochemistry within the phytochrome superfamily.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6123-7. doi: 10.1073/pnas.0902370106. Epub 2009 Apr 1.
8
Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9170-5. doi: 10.1073/pnas.0911535107. Epub 2010 Apr 30.
9
Primary reactions of bacteriophytochrome observed with ultrafast mid-infrared spectroscopy.
J Phys Chem A. 2011 Apr 28;115(16):3778-86. doi: 10.1021/jp106891x. Epub 2010 Dec 30.
10
The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16356-16362. doi: 10.1073/pnas.1921706117. Epub 2020 Jun 26.

引用本文的文献

1
Protein control of photochemistry and transient intermediates in phytochromes.
Nat Commun. 2022 Nov 11;13(1):6838. doi: 10.1038/s41467-022-34640-8.
2
The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization.
J Phys Chem Lett. 2022 May 26;13(20):4538-4542. doi: 10.1021/acs.jpclett.2c00899. Epub 2022 May 16.
3
Ultrafast Photoconversion Dynamics of the Knotless Phytochrome Cph2.
Int J Mol Sci. 2021 Oct 2;22(19):10690. doi: 10.3390/ijms221910690.
4
UV-trained and metal-enhanced fluorescence of biliverdin and biliverdin nanoparticles.
Nanoscale. 2021 Mar 12;13(9):4785-4798. doi: 10.1039/d0nr08485a.
6
Effect of the PHY Domain on the Photoisomerization Step of the Forward P →P Conversion of a Knotless Phytochrome.
Chemistry. 2020 Dec 18;26(71):17261-17266. doi: 10.1002/chem.202003138. Epub 2020 Nov 27.
7
Revealing the origin of multiphasic dynamic behaviors in cyanobacteriochrome.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19731-19736. doi: 10.1073/pnas.2001114117. Epub 2020 Aug 5.
8
The Origin of Ultrafast Multiphasic Dynamics in Photoisomerization of Bacteriophytochrome.
J Phys Chem Lett. 2020 Aug 6;11(15):5913-5919. doi: 10.1021/acs.jpclett.0c01394. Epub 2020 Jul 13.
9
The interplay between chromophore and protein determines the extended excited state dynamics in a single-domain phytochrome.
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16356-16362. doi: 10.1073/pnas.1921706117. Epub 2020 Jun 26.
10
A Proposed Method to Obtain Surface Specificity with Pump-Probe and 2D Spectroscopies.
J Phys Chem A. 2020 Apr 30;124(17):3471-3483. doi: 10.1021/acs.jpca.9b11791. Epub 2020 Apr 16.

本文引用的文献

1
Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein.
Science. 2016 May 6;352(6286):725-9. doi: 10.1126/science.aad5081. Epub 2016 May 5.
2
Dynamic inhomogeneity in the photodynamics of cyanobacterial phytochrome Cph1.
Biochemistry. 2014 May 6;53(17):2818-26. doi: 10.1021/bi500108s. Epub 2014 Apr 21.
3
Two-dimensional Fourier transform electronic spectroscopy at a conical intersection.
J Chem Phys. 2014 Mar 28;140(12):124312. doi: 10.1063/1.4867996.
4
Dispersion-free continuum two-dimensional electronic spectrometer.
Appl Opt. 2014 Mar 20;53(9):1909-17. doi: 10.1364/AO.53.001909.
5
Pigment-protein interactions in phytochromes probed by fluorescence line narrowing spectroscopy.
J Phys Chem B. 2013 Dec 5;117(48):14940-50. doi: 10.1021/jp409110q. Epub 2013 Nov 22.
7
Independent phasing of rephasing and non-rephasing 2D electronic spectra.
J Chem Phys. 2013 Aug 28;139(8):084201. doi: 10.1063/1.4818808.
9
Measuring the spectral diffusion of chlorophyll a using two-dimensional electronic spectroscopy.
J Phys Chem B. 2013 Feb 28;117(8):2294-9. doi: 10.1021/jp310154y. Epub 2013 Feb 12.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验