Suppr超能文献

质子转移和氢键相互作用决定了细菌视紫红质的荧光量子产率和光化学效率。

Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome.

机构信息

Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, VU University, De Boelelaan 1081, 1081HV Amsterdam, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2010 May 18;107(20):9170-5. doi: 10.1073/pnas.0911535107. Epub 2010 Apr 30.

Abstract

Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C15 horizontal lineC16 double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important new development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Here we report that an unusual Bph, RpBphP3 from Rhodopseudomonas palustris, denoted P3, is fluorescent. This Bph modulates synthesis of light-harvesting complex in combination with a second Bph exhibiting classical photochemistry, RpBphP2, denoted P2. We identify the factors that determine the fluorescence and isomerization quantum yields through the application of ultrafast spectroscopy to wild-type and mutants of P2 and P3. The excited-state lifetime of the biliverdin chromophore in P3 was significantly longer at 330-500 ps than in P2 and other classical phytochromes and accompanied by a significantly reduced isomerization quantum yield. H/D exchange reduces the rate of decay from the excited state of biliverdin by a factor of 1.4 and increases the isomerization quantum yield. Comparison of the properties of the P2 and P3 variants shows that the quantum yields of fluorescence and isomerization are determined by excited-state deprotonation of biliverdin at the pyrrole rings, in competition with hydrogen-bond rupture between the D-ring and the apoprotein. This work provides a basis for structure-based conversion of Bph into an efficient near-IR fluorescent marker.

摘要

光敏色素是一种红光光受体蛋白,可调节植物、细菌和真菌中的多种反应和细胞过程。光敏色素的光激活机制涉及到开链四吡咯发色团的 C15 横线 C16 双键周围的异构化,导致其 D 环翻转。在一个重要的新进展中,细菌光敏色素(Bph)已被设计用于哺乳动物组织中的荧光标记。在这里,我们报告一种来自沼泽红假单胞菌的不寻常的 Bph,RpBphP3,称为 P3,是荧光的。这种 Bph 与另一种表现出经典光化学的 Bph(称为 P2)一起调节光捕获复合物的合成。我们通过超快光谱学应用于 P2 和 P3 的野生型和突变体,确定了决定荧光和异构化量子产率的因素。在 P3 中,胆绿素发色团的激发态寿命在 330-500 ps 之间明显长于 P2 和其他经典光敏色素,并伴随着显著降低的异构化量子产率。H/D 交换将胆绿素从激发态的衰减速率降低了 1.4 倍,并增加了异构化量子产率。比较 P2 和 P3 变体的性质表明,荧光和异构化的量子产率是由吡咯环上胆绿素的激发态去质子化决定的,与 D 环和脱辅基蛋白之间氢键的断裂竞争。这项工作为基于结构的将 Bph 转化为高效近红外荧光标记物提供了基础。

相似文献

引用本文的文献

5
Ultrafast protein response in the Pfr state of Cph1 phytochrome.超快的 Cph1 光敏色素 Pfr 状态下的蛋白质响应。
Photochem Photobiol Sci. 2023 Apr;22(4):919-930. doi: 10.1007/s43630-023-00362-z. Epub 2023 Jan 18.
7
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.细菌中的光调节基因表达:基础、进展与展望
Front Bioeng Biotechnol. 2022 Oct 14;10:1029403. doi: 10.3389/fbioe.2022.1029403. eCollection 2022.

本文引用的文献

5
Distinct classes of red/far-red photochemistry within the phytochrome superfamily.植物色素超家族中不同类别的红光/远红光光化学
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6123-7. doi: 10.1073/pnas.0902370106. Epub 2009 Apr 1.
9
The structure of a complete phytochrome sensory module in the Pr ground state.处于Pr基态的完整光敏色素传感模块的结构。
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14709-14. doi: 10.1073/pnas.0806477105. Epub 2008 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验