Li Thomas J X, Reidys Christian M
Biocomplexity Institute of Virginia Tech, Blacksburg, VA, 24061, USA.
J Math Biol. 2017 Jun;74(7):1793-1821. doi: 10.1007/s00285-016-1078-1. Epub 2016 Nov 16.
In this paper we study properties of topological RNA structures, i.e. RNA contact structures with cross-serial interactions that are filtered by their topological genus. RNA secondary structures within this framework are topological structures having genus zero. We derive a new bivariate generating function whose singular expansion allows us to analyze the distributions of arcs, stacks, hairpin- , interior- and multi-loops. We then extend this analysis to H-type pseudoknots, kissing hairpins as well as 3-knots and compute their respective expectation values. Finally we discuss our results and put them into context with data obtained by uniform sampling structures of fixed genus.
在本文中,我们研究拓扑RNA结构的性质,即具有交叉序列相互作用且按拓扑亏格过滤的RNA接触结构。在此框架内的RNA二级结构是亏格为零的拓扑结构。我们推导了一个新的双变量生成函数,其奇异展开使我们能够分析弧、堆叠、发夹环、内环和多环的分布。然后,我们将此分析扩展到H型假结、亲吻发夹以及三叶结,并计算它们各自的期望值。最后,我们讨论我们的结果,并将其与通过固定亏格的均匀采样结构获得的数据相结合。