Suppr超能文献

拟南芥中由顺式作用非编码反义转录本控制种子休眠

Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript.

作者信息

Fedak Halina, Palusinska Malgorzata, Krzyczmonik Katarzyna, Brzezniak Lien, Yatusevich Ruslan, Pietras Zbigniew, Kaczanowski Szymon, Swiezewski Szymon

机构信息

Department of Protein Biosynthesis, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland.

Department of Bioinformatics, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland.

出版信息

Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7846-E7855. doi: 10.1073/pnas.1608827113. Epub 2016 Nov 15.

Abstract

Seed dormancy is one of the most crucial process transitions in a plant's life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3' region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5' capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.

摘要

种子休眠是植物生命周期中最关键的过程转变之一。其时间受到发芽延迟1基因(DOG1)表达水平的严格控制。DOG1是拟南芥种子休眠的主要数量性状位点,并且已被证明在许多其他植物物种中控制休眠。这通过DOG1 mRNA功能性短交替聚腺苷酸化形式的进化保守性得以体现。值得注意的是,DOG1的3'区域,包括该转录本异构体中不包含的最后一个外显子,在DNA水平上显示出高度保守性,但编码的多肽保守性较差。在这里,我们证明DOG1的这个区域包含一个用于非编码反义RNA(asDOG1)转录的启动子,该反义RNA具有5'帽结构、聚腺苷酸化且相对稳定。这个启动子是自主的,并且asDOG1具有与已知DOG1转录本不同的表达谱。我们使用几种方法表明,asDOG1在种子成熟过程中在顺式作用下强烈抑制DOG1表达,但在反式作用下则不能。因此,asDOG1在顺式作用下对种子休眠的负调控导致DOG1表达的等位基因特异性抑制并促进萌发。鉴于asDOG1启动子的进化保守性,我们提出这种顺式受限的非编码RNA介导的限制种子休眠持续时间的机制在十字花科中起作用。

相似文献

1
Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7846-E7855. doi: 10.1073/pnas.1608827113. Epub 2016 Nov 15.
2
Antisense transcription represses seed dormancy QTL to regulate drought tolerance.
EMBO Rep. 2017 Dec;18(12):2186-2196. doi: 10.15252/embr.201744862. Epub 2017 Oct 13.
3
Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1.
Plant Physiol. 2016 Feb;170(2):947-55. doi: 10.1104/pp.15.01483. Epub 2015 Nov 30.
5
6
Basic LEUCINE ZIPPER TRANSCRIPTION FACTOR67 Transactivates to Establish Primary Seed Dormancy in Arabidopsis.
Plant Cell. 2019 Jun;31(6):1276-1288. doi: 10.1105/tpc.18.00892. Epub 2019 Apr 8.
8
DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3571-80. doi: 10.1073/pnas.1403851111. Epub 2014 Aug 11.

引用本文的文献

2
LncRNAOmics: A Comprehensive Review of Long Non-Coding RNAs in Plants.
Genes (Basel). 2025 Jun 29;16(7):765. doi: 10.3390/genes16070765.
3
Plant long noncoding RNAs: why do we not know more?
Biol Res. 2025 Jun 10;58(1):37. doi: 10.1186/s40659-025-00610-9.
4
Paving the way to secondary dormancy: mind the DOG's tail.
Plant Physiol. 2025 Feb 7;197(2). doi: 10.1093/plphys/kiaf008.
6
Biological Insights and Recent Advances in Plant Long Non-Coding RNA.
Int J Mol Sci. 2024 Nov 7;25(22):11964. doi: 10.3390/ijms252211964.
10
Interplay between coding and non-coding regulation drives the Arabidopsis seed-to-seedling transition.
Nat Commun. 2024 Feb 26;15(1):1724. doi: 10.1038/s41467-024-46082-5.

本文引用的文献

2
Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2812-21. doi: 10.1073/pnas.1517456113. Epub 2016 May 2.
3
DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2199-206. doi: 10.1073/pnas.1600558113. Epub 2016 Mar 28.
4
5
Unique features of long non-coding RNA biogenesis and function.
Nat Rev Genet. 2016 Jan;17(1):47-62. doi: 10.1038/nrg.2015.10.
6
Seed Dormancy in Arabidopsis Is Controlled by Alternative Polyadenylation of DOG1.
Plant Physiol. 2016 Feb;170(2):947-55. doi: 10.1104/pp.15.01483. Epub 2015 Nov 30.
7
DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts.
Genome Res. 2015 Nov;25(11):1622-33. doi: 10.1101/gr.189597.115. Epub 2015 Aug 20.
8
Flowering Locus C's Lessons: Conserved Chromatin Switches Underpinning Developmental Timing and Adaptation.
Plant Physiol. 2015 Aug;168(4):1237-45. doi: 10.1104/pp.15.00496. Epub 2015 Jul 6.
9
X-chromosome inactivation: new insights into cis and trans regulation.
Curr Opin Genet Dev. 2015 Apr;31:57-66. doi: 10.1016/j.gde.2015.04.002. Epub 2015 May 22.
10
Long non-coding RNAs and their biological roles in plants.
Genomics Proteomics Bioinformatics. 2015 Jun;13(3):137-47. doi: 10.1016/j.gpb.2015.02.003. Epub 2015 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验