Nishikata Koro, Fuchigami Sotaro, Ikeguchi Mitsunori, Kidera Akinori
Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan.
Graduate School of Nanobioscience, Yokohama City University, Yokohama 230-0045, Japan; Research Program for Computational Science, RIKEN, Wako 351-0198, Japan.
Biophysics (Nagoya-shi). 2010 Mar 16;6:27-36. doi: 10.2142/biophysics.6.27. eCollection 2010.
The halobacterial transducer of sensory rhodopsin II (HtrII) is a photosignal transducer associated with phototaxis in extreme halophiles. The HAMP domain, a linker domain in HtrII, is considered to play an important role in transferring the signal from the membrane to the cytoplasmic region, although its structure in the complex remains undetermined. To establish the structural basis for understanding the mechanism of signal transduction, we present an atomic model of the structure of the N-terminal HAMP domain from (HtrII: 84-136), based on molecular dynamics (MD) simulations. The model was built by homology modeling using the NMR structure of Af1503 from as a template. The HAMP domains of Af1503 and HtrII were stable during MD simulations over 100 ns. Quantitative analyses of inter-helical packing indicated that the Af1503 HAMP domain stably maintained unusual knobs-to-knobs packing, as observed in the NMR structure, while the bulky side-chains of HtrII shifted the packing state to canonical knobs-into-holes. The role of the connector loop in maintaining structural stability was also discussed using MD simulations of loop deletion mutants.
嗜盐菌视紫红质II(HtrII)的光感受器是一种与极端嗜盐菌趋光性相关的光信号转导器。HAMP结构域是HtrII中的一个连接结构域,尽管其在复合物中的结构尚未确定,但被认为在将信号从膜传递到细胞质区域中起着重要作用。为了建立理解信号转导机制的结构基础,我们基于分子动力学(MD)模拟,提出了来自嗜盐菌视紫红质II(HtrII: 84-136)的N端HAMP结构域的原子模型。该模型以嗜盐栖热放线菌(Actinopolyspora halophila)的Af1503的NMR结构为模板,通过同源建模构建。在超过100 ns的MD模拟过程中,Af1503和HtrII的HAMP结构域是稳定的。螺旋间堆积的定量分析表明,如在NMR结构中观察到的那样,Af1503的HAMP结构域稳定地保持着不寻常的旋钮对旋钮堆积,而HtrII的大侧链将堆积状态转变为典型的旋钮插入孔中堆积。还使用环缺失突变体的MD模拟讨论了连接环在维持结构稳定性中的作用。