Allmendinger Pitt, Deiglmayr Johannes, Schullian Otto, Höveler Katharina, Agner Josef A, Schmutz Hansjürg, Merkt Frédéric
Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, ETH Zürich, CH-8093, Zurich, Switzerland.
Chemphyschem. 2016 Nov 18;17(22):3596-3608. doi: 10.1002/cphc.201600828. Epub 2016 Nov 16.
Studies of ion-molecule reactions at low temperatures are difficult because stray electric fields in the reaction volume affect the kinetic energy of charged reaction partners. We describe a new experimental approach to study ion-molecule reactions at low temperatures and present, as example, a measurement of the H2++H2→H3++H reaction with the H2+ ion prepared in a single rovibrational state at collision energies in the range E /k =5-60 K. To reach such low-collision energies, we use a merged-beam approach and observe the reaction within the orbit of a Rydberg electron, which shields the ions from stray fields. The first beam is a supersonic beam of pure ground-state H molecules and the second is a supersonic beam of H molecules excited to Rydberg-Stark states of principal quantum number n selected in the range 20-40. Initially, the two beams propagate along axes separated by an angle of 10°. To merge the two beams, the Rydberg molecules in the latter beam are deflected using a surface-electrode Rydberg-Stark deflector. The collision energies of the merged beams are determined by measuring the velocity distributions of the two beams and they are adjusted by changing the temperature of the pulsed valve used to generate the ground-state H beam and by adapting the electric-potential functions applied to the electrodes of the deflector. The collision energy is varied down to below E /k =10 K, that is, below E ≈1 meV, with an energy resolution of 100 μeV. We demonstrate that the Rydberg electron acts as a spectator and does not affect the cross sections, which are found to closely follow a classical Langevin-capture model in the collision energy range investigated. Because all neutral atoms and molecules can be excited to Rydberg states, this method of studying ion-molecule reactions is applicable to other reactions involving singly charged cations.
低温下离子 - 分子反应的研究颇具难度,因为反应空间中的杂散电场会影响带电反应伙伴的动能。我们描述了一种研究低温下离子 - 分子反应的新实验方法,并举例展示了对H₂⁺ + H₂ → H₃⁺ + H反应的测量,其中H₂⁺离子处于单一振转状态,碰撞能量范围为E/k = 5 - 60 K。为达到如此低的碰撞能量,我们采用合并束方法,并在里德堡电子的轨道内观测反应,该电子可使离子免受杂散场影响。第一束是纯基态H分子的超声束,第二束是被激发到主量子数n在20 - 40范围内的里德堡 - 斯塔克态的H分子超声束。起初,两束沿相隔10°角的轴传播。为合并两束,使用表面电极里德堡 - 斯塔克偏转器使后一束中的里德堡分子偏转。合并束的碰撞能量通过测量两束的速度分布来确定,并通过改变用于产生基态H束的脉冲阀温度以及调整施加到偏转器电极的电势函数来调节。碰撞能量可低至E/k < 10 K,即E < 1 meV,能量分辨率为100 μeV。我们证明里德堡电子起旁观者作用,不影响截面,在所研究的碰撞能量范围内,截面被发现紧密遵循经典朗之万俘获模型。由于所有中性原子和分子都可被激发到里德堡态,这种研究离子 - 分子反应的方法适用于其他涉及单电荷阳离子的反应。