Suppr超能文献

在 0 K 附近的离子和自由基的反应:He+NO→He+N+O。

Reaction of an Ion and a Free Radical near 0 K: He + NO → He + N + O.

机构信息

Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland.

出版信息

J Phys Chem A. 2023 Feb 16;127(6):1458-1468. doi: 10.1021/acs.jpca.2c08221. Epub 2023 Feb 8.

Abstract

The reactions between ions and free radicals are among the fastest chemical reactions. They are predicted to proceed with large rates, even near 0 K, but so far, this prediction has not been verified experimentally. We report on measurements of the rate coefficient of the reaction between the ion He and the free radical NO at collision energies in the range between 0 and ∼ ·10 K. To avoid heating of the ions by stray electric fields, the reaction is observed within the large orbit of a Rydberg electron of principal quantum number ≥ 30, which shields the ion from external electric fields without affecting the reaction. Low collision energies are reached by merging a supersonic beam of He Rydberg atoms with a supersonic beam of NO molecules and adjusting their relative velocity using a chip-based Rydberg-Stark decelerator and deflector. We observe a strong enhancement of the reaction rate at collision energies below ∼·2 K. This enhancement is interpreted on the basis of adiabatic-channel capture-rate calculations as arising from the near-degenerate rotational levels of opposite parity resulting from the Λ-doubling in the X Π ground state of NO. With these new results, we examine the reliability of broadly used approximate analytic expressions for the thermal rate constants of ion-molecule reactions at low temperatures.

摘要

离子和自由基之间的反应是最快的化学反应之一。据预测,即使在接近 0 K 的温度下,它们的反应速率也会很大,但到目前为止,这一预测尚未得到实验验证。我们报告了在 0 到约 10 K 的碰撞能范围内测量离子 He 和自由基 NO 之间反应的速率系数。为了避免离子被杂散电场加热,我们在主量子数≥30 的里德堡电子的大轨道内观察反应,这可以屏蔽离子免受外部电场的影响,而不会影响反应。通过将 He 里德堡原子的超音速束与超音速 NO 分子束合并,并使用基于芯片的里德堡-斯塔克减速器和偏转器来调整它们的相对速度,可以达到低碰撞能。我们观察到在低于约 2 K 的碰撞能下,反应速率有很强的增强。这种增强是基于绝热通道捕获率计算来解释的,这是由于 NO 的 X Π 基态中的 Λ 双重性导致的相反宇称的近简并转动能级引起的。有了这些新的结果,我们检验了广泛使用的低温离子-分子反应热速率常数的近似解析表达式的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ede1/9940198/75f40cd313a1/jp2c08221_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验