The Key Lab of Energy Conversion and Storage of Shanxi Province and the Key Lab of Chemical Biology and Molecular Engineering of the Ministry of Education of China, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi, 030006, P.R. China.
Department of Chemistry, University of Colorado Denver, Campus Box 194, P.O. Box 173364, Denver, CO, 80217-3364, USA.
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15651-15655. doi: 10.1002/anie.201609455. Epub 2016 Nov 16.
Chemical bonding is at the heart of chemistry. Recent work on high bond orders between homonuclear transition metal atoms has led to ultrashort metal-metal (TM-TM) distances defined as d <1.900 Å. The present work is a computational design and characterization of novel main group species containing ultrashort metal-metal distances (1.728-1.866 Å) between two beryllium atoms in different molecular environments, including a rhombic Be X (X=C, N) core, a vertical Be-Be axis in a 3D molecular star, and a horizontal Be-Be axis supported by N-heterocyclic carbene (NHC) ligands. The ultrashort Be-Be distances are achieved by affixing bridging atoms to attract the beryllium atoms electrostatically or covalently. Among these species are five global minima and one chemically viable diberyllium complex, which provide potential targets for experimental realization.
化学键是化学的核心。最近关于同核过渡金属原子之间高键序的研究导致了金属-金属(TM-TM)距离定义为 d <1.900 Å。本工作是对包含两个铍原子的新型主族物种进行计算设计和表征,这些物种在不同的分子环境中具有超短的金属-金属距离(1.728-1.866 Å),包括菱形 Be X(X=C、N)核、三维分子星中的垂直 Be-Be 轴以及由 N-杂环卡宾(NHC)配体支撑的水平 Be-Be 轴。通过将桥接原子固定在铍原子上,可以通过静电或共价吸引来实现超短的 Be-Be 距离。这些物种中有五个全局最小值和一个化学可行的双铍配合物,它们为实验实现提供了潜在的目标。