Suppr超能文献

球囊藻和小立碗藓的叶绿体信号识别颗粒(SRP)系统作为高等植物中依赖SRP的蛋白质转运进化过程中的中间环节

The Chloroplast SRP Systems of Chaetosphaeridium globosum and Physcomitrella patens as Intermediates in the Evolution of SRP-Dependent Protein Transport in Higher Plants.

作者信息

Ziehe Dominik, Dünschede Beatrix, Zenker Mira, Funke Silke, Nowaczyk Marc M, Schünemann Danja

机构信息

Molecular Biology of Plant Organelles, Ruhr-University Bochum, 44780, Bochum, Germany.

Cyanobacterial Membrane Protein Complexes, Ruhr-University Bochum, 44780, Bochum, Germany.

出版信息

PLoS One. 2016 Nov 18;11(11):e0166818. doi: 10.1371/journal.pone.0166818. eCollection 2016.

Abstract

The bacterial signal recognition particle (SRP) mediates the cotranslational targeting of membrane proteins and is a high affinity complex consisting of a SRP54 protein subunit (Ffh) and an SRP RNA. The chloroplast SRP (cpSRP) pathway has adapted throughout evolution to enable the posttranslational targeting of the light harvesting chlorophyll a/b binding proteins (LHCPs) to the thylakoid membrane. In spermatophytes (seed plants), the cpSRP lacks the SRP RNA and is instead formed by a high affinity interaction of the conserved 54-kD subunit (cpSRP54) with the chloroplast-specific cpSRP43 protein. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane. However, in contrast to spermatophytes, plastid SRP RNAs were identified within all streptophyte lineages and in all chlorophyte branches. Furthermore, it was shown that cpSRP43 does not interact with cpSRP54 in chlorophytes (e.g., Chlamydomonas reinhardtii). In this study, we biochemically characterized the cpSRP system of the charophyte Chaetosphaeridium globosum and the bryophyte Physcomitrella patens. Interaction studies demonstrate low affinity binding of cpSRP54 to cpSRP43 (Kd ~10 μM) in Chaetosphaeridium globosum and Physcomitrella patens as well as relatively low affinity binding of cpSRP54 to cpSRP RNA (Kd ~1 μM) in Physcomitrella patens. CpSRP54/cpSRP43 complex formation in charophytes is supported by the finding that specific alterations in the second chromodomain of cpSRP43, that are conserved within charophytes and absent in land plants, do not interfere with cpSRP54 binding. Furthermore, our data show that the elongated apical loop structure of the Physcomitrella patens cpSRP RNA contributes to the low binding affinity between cpSRP54 and the cpSRP RNA.

摘要

细菌信号识别颗粒(SRP)介导膜蛋白的共翻译靶向,是一种由SRP54蛋白亚基(Ffh)和SRP RNA组成的高亲和力复合物。叶绿体SRP(cpSRP)途径在整个进化过程中不断适应,以使光捕获叶绿素a/b结合蛋白(LHCP)能够在翻译后靶向类囊体膜。在种子植物中,cpSRP缺乏SRP RNA,而是由保守的54-kD亚基(cpSRP54)与叶绿体特异性cpSRP43蛋白的高亲和力相互作用形成。这种异源二聚体cpSRP识别LHCP并将其递送至类囊体膜。然而,与种子植物不同,在所有链形植物谱系和所有绿藻分支中都鉴定出了质体SRP RNA。此外,研究表明,在绿藻(如莱茵衣藻)中,cpSRP43不与cpSRP54相互作用。在本研究中,我们对轮藻球形团藻和苔藓植物小立碗藓的cpSRP系统进行了生化特性分析。相互作用研究表明,在球形团藻和小立碗藓中,cpSRP54与cpSRP43的结合亲和力较低(Kd约为10 μM),在小立碗藓中,cpSRP54与cpSRP RNA的结合亲和力也相对较低(Kd约为1 μM)。轮藻中cpSRP43第二个色域的特定改变在轮藻中保守而在陆地植物中不存在,这一发现支持了轮藻中cpSRP54/cpSRP43复合物的形成,且这种改变不影响cpSRP54的结合。此外,我们的数据表明,小立碗藓cpSRP RNA的延长顶端环结构导致cpSRP54与cpSRP RNA之间的结合亲和力较低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3be3/5115805/d4d72f544b60/pone.0166818.g001.jpg

相似文献

3
Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport.
Eur J Cell Biol. 2010 Dec;89(12):965-73. doi: 10.1016/j.ejcb.2010.06.020. Epub 2010 Aug 14.
6
Functional analysis of the protein-interacting domains of chloroplast SRP43.
J Biol Chem. 2001 Jul 6;276(27):24654-60. doi: 10.1074/jbc.M100153200. Epub 2001 Apr 16.
9
Functional divergence of the plastid and cytosolic forms of the 54-kDa subunit of signal recognition particle.
Biochem Biophys Res Commun. 1999 Jan 8;254(1):253-8. doi: 10.1006/bbrc.1998.9923.
10
Assembly of chloroplast signal recognition particle involves structural rearrangement in cpSRP43.
J Mol Biol. 2008 Aug 1;381(1):49-60. doi: 10.1016/j.jmb.2008.05.065. Epub 2008 Jun 3.

引用本文的文献

1
Lon Protease Removes Excess Signal Recognition Particle Protein in Escherichia coli.
J Bacteriol. 2020 Jun 25;202(14). doi: 10.1128/JB.00161-20.
2
Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants.
Photosynth Res. 2018 Dec;138(3):303-313. doi: 10.1007/s11120-018-0544-6. Epub 2018 Jun 28.

本文引用的文献

1
Free-energy landscape of a hyperstable RNA tetraloop.
Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6665-70. doi: 10.1073/pnas.1603154113. Epub 2016 May 27.
2
Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release.
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):E1615-24. doi: 10.1073/pnas.1524777113. Epub 2016 Mar 7.
4
Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates.
J Biol Chem. 2015 Jun 19;290(25):15462-15474. doi: 10.1074/jbc.M114.624346. Epub 2015 Apr 27.
6
Structural diversity of signal recognition particle RNAs in plastids.
Plant Signal Behav. 2013 Oct;8(10):doi: 10.4161/psb.26848. doi: 10.4161/psb.26848.
7
The structural basis of FtsY recruitment and GTPase activation by SRP RNA.
Mol Cell. 2013 Dec 12;52(5):643-54. doi: 10.1016/j.molcel.2013.10.005. Epub 2013 Nov 7.
8
Signal recognition particle: an essential protein-targeting machine.
Annu Rev Biochem. 2013;82:693-721. doi: 10.1146/annurev-biochem-072711-164732. Epub 2013 Feb 13.
10
Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition.
Biochim Biophys Acta. 2013 Feb;1833(2):341-51. doi: 10.1016/j.bbamcr.2012.06.028. Epub 2012 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验