Horn Annemarie, Hennig Janosch, Ahmed Yasar L, Stier Gunter, Wild Klemens, Sattler Michael, Sinning Irmgard
Heidelberg University Biochemistry Center (BZH), INF 328, Heidelberg D-69120, Germany.
Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching DE-85747, Germany.
Nat Commun. 2015 Nov 16;6:8875. doi: 10.1038/ncomms9875.
Canonical membrane protein biogenesis requires co-translational delivery of ribosome-associated proteins to the Sec translocase and depends on the signal recognition particle (SRP) and its receptor (SR). In contrast, high-throughput delivery of abundant light-harvesting chlorophyll a,b-binding proteins (LHCPs) in chloroplasts to the Alb3 insertase occurs post-translationally via a soluble transit complex including the cpSRP43/cpSRP54 heterodimer (cpSRP). Here we describe the molecular mechanisms of tethering cpSRP to the Alb3 insertase by specific interaction of cpSRP43 chromodomain 3 with a linear motif in the Alb3 C-terminal tail. Combining NMR spectroscopy, X-ray crystallography and biochemical analyses, we dissect the structural basis for selectivity of chromodomains 2 and 3 for their respective ligands cpSRP54 and Alb3, respectively. Negative cooperativity in ligand binding can be explained by dynamics in the chromodomain interface. Our study provides a model for membrane recruitment of the transit complex and may serve as a prototype for a functional gain by the tandem arrangement of chromodomains.
典型的膜蛋白生物合成需要核糖体相关蛋白共翻译递送至Sec转运体,并依赖于信号识别颗粒(SRP)及其受体(SR)。相比之下,叶绿体中大量捕光叶绿素a、b结合蛋白(LHCPs)通过包括cpSRP43/cpSRP54异二聚体(cpSRP)的可溶性转运复合物进行翻译后递送至Alb3插入酶。在这里,我们描述了通过cpSRP43色域3与Alb3 C末端尾巴中的线性基序特异性相互作用将cpSRP拴系到Alb3插入酶的分子机制。结合核磁共振光谱、X射线晶体学和生化分析,我们分别剖析了色域2和色域3对其各自配体cpSRP54和Alb3选择性的结构基础。配体结合中的负协同性可以通过色域界面的动力学来解释。我们的研究提供了一个转运复合物膜招募的模型,并可能作为色域串联排列功能增益的原型。