Kinder Institute for Urban Research, Rice University, Houston, TX.
Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA.
Health Serv Res. 2018 Feb;53(1):236-255. doi: 10.1111/1475-6773.12616. Epub 2016 Nov 16.
To develop an automated, data-driven, and scale-flexible method to delineate hospital service areas (HSAs) and hospital referral regions (HRRs) that are up-to-date, representative of all patients, and have the optimal localization of hospital visits.
The 2011 state inpatient database in Florida from the Healthcare Cost and Utilization Project.
A network optimization method was used to redefine HSAs and HRRs by maximizing patient-to-hospital flows within each HSA/HRR while minimizing flows between them. We first constructed as many HSAs/HRRs as existing Dartmouth units in Florida, and then compared the two by various metrics. Next, we sought to derive the optimal numbers and configurations of HSAs/HRRs that best reflect the modularity of hospitalization patterns in Florida.
The HSAs/HRRs by our method are favored over the Dartmouth units in balance of region size and market structure, shape, and most important, local hospitalization.
The new method is automated, scale-flexible, and effective in capturing the natural structure of the health care system. It has great potential for applications in delineating other health care service areas or in larger geographic regions.
开发一种自动化、数据驱动且具有灵活规模的方法,以划定最新的、代表所有患者的医院服务区 (HSA) 和医院转诊区 (HRR),并使医院就诊的本地化达到最佳效果。
医疗保健成本和利用项目中的佛罗里达州 2011 年州住院病人数据库。
使用网络优化方法,通过最大化每个 HSA/HRR 内的患者到医院的流量,同时最小化它们之间的流量,重新定义 HSA 和 HRR。我们首先构建了尽可能多的 HSA/HRR,与佛罗里达州现有的 Dartmouth 单位数量相同,然后通过各种指标对两者进行比较。接下来,我们试图确定最佳的 HSA/HRR 数量和配置,以最佳反映佛罗里达州住院模式的模块化。
我们的方法所确定的 HSA/HRR 在区域大小和市场结构、形状的平衡以及最重要的本地住院治疗方面优于 Dartmouth 单位。
新方法具有自动化、灵活规模和有效捕捉医疗保健系统自然结构的特点。它在划定其他医疗保健服务区或更大地理区域方面具有很大的应用潜力。