Zolnik Timothy A, Sha Fern, Johenning Friedrich W, Schreiter Eric R, Looger Loren L, Larkum Matthew E, Sachdev Robert N S
Neurocure Center for Excellence, Chariteplatz 1/Virchowweg 6, Charité Universitätsmedizin Berlin and Humboldt Universität, Berlin, 10117, Germany.
Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
J Physiol. 2017 Mar 1;595(5):1465-1477. doi: 10.1113/JP273116. Epub 2016 Dec 14.
The genetically encoded fluorescent calcium integrator calcium-modulated photoactivatable ratiobetric integrator (CaMPARI) reports calcium influx induced by synaptic and neural activity. Its fluorescence is converted from green to red in the presence of violet light and calcium. The rate of conversion - the sensitivity to activity - is tunable and depends on the intensity of violet light. Synaptic activity and action potentials can independently initiate significant CaMPARI conversion. The level of conversion by subthreshold synaptic inputs is correlated to the strength of input, enabling optical readout of relative synaptic strength. When combined with optogenetic activation of defined presynaptic neurons, CaMPARI provides an all-optical method to map synaptic connectivity.
The calcium-modulated photoactivatable ratiometric integrator (CaMPARI) is a genetically encoded calcium integrator that facilitates the study of neural circuits by permanently marking cells active during user-specified temporal windows. Permanent marking enables measurement of signals from large swathes of tissue and easy correlation of activity with other structural or functional labels. One potential application of CaMPARI is labelling neurons postsynaptic to specific populations targeted for optogenetic stimulation, giving rise to all-optical functional connectivity mapping. Here, we characterized the response of CaMPARI to several common types of neuronal calcium signals in mouse acute cortical brain slices. Our experiments show that CaMPARI is effectively converted by both action potentials and subthreshold synaptic inputs, and that conversion level is correlated to synaptic strength. Importantly, we found that conversion rate can be tuned: it is linearly related to light intensity. At low photoconversion light levels CaMPARI offers a wide dynamic range due to slower conversion rate; at high light levels conversion is more rapid and more sensitive to activity. Finally, we employed CaMPARI and optogenetics for functional circuit mapping in ex vivo acute brain slices, which preserve in vivo-like connectivity of axon terminals. With a single light source, we stimulated channelrhodopsin-2-expressing long-range posteromedial (POm) thalamic axon terminals in cortex and induced CaMPARI conversion in recipient cortical neurons. We found that POm stimulation triggers robust photoconversion of layer 5 cortical neurons and weaker conversion of layer 2/3 neurons. Thus, CaMPARI enables network-wide, tunable, all-optical functional circuit mapping that captures supra- and subthreshold depolarization.
基因编码的荧光钙整合器——钙调制光激活比率整合器(CaMPARI)可报告由突触和神经活动诱导的钙内流。在紫光和钙存在的情况下,其荧光从绿色转变为红色。转变速率——对活动的敏感度——是可调的,并且取决于紫光的强度。突触活动和动作电位可独立引发显著的CaMPARI转变。阈下突触输入的转变水平与输入强度相关,从而能够对相对突触强度进行光学读出。当与特定突触前神经元的光遗传学激活相结合时,CaMPARI提供了一种全光学方法来绘制突触连接图谱。
钙调制光激活比率整合器(CaMPARI)是一种基因编码的钙整合器,通过在用户指定的时间窗口内永久标记活跃细胞,有助于神经回路的研究。永久标记能够测量来自大片组织的信号,并易于将活动与其他结构或功能标记相关联。CaMPARI的一个潜在应用是标记光遗传学刺激靶向的特定群体的突触后神经元,从而实现全光学功能连接图谱绘制。在这里,我们在小鼠急性皮质脑片中表征了CaMPARI对几种常见类型神经元钙信号的反应。我们的实验表明,动作电位和阈下突触输入均可有效使CaMPARI转变,并且转变水平与突触强度相关。重要的是,我们发现转变速率是可调的:它与光强度呈线性关系。在低光转换光水平下,由于转变速率较慢,CaMPARI具有较宽的动态范围;在高光水平下,转变更快且对活动更敏感。最后,我们在离体急性脑片中使用CaMPARI和光遗传学进行功能回路图谱绘制,这些脑片保留了轴突终末类似体内的连接性。利用单个光源,我们刺激了皮质中表达通道视紫红质-2的远程后内侧(POm)丘脑轴突终末,并在接受刺激的皮质神经元中诱导了CaMPARI转变。我们发现POm刺激触发了第5层皮质神经元的强烈光转换和第2/3层神经元的较弱转换。因此,CaMPARI能够进行全网络、可调的全光学功能回路图谱绘制,捕获阈上和阈下去极化。