School of Biosciences, Cardiff University, Cardiff, United Kingdom.
Annu Rev Neurosci. 2013 Jul 8;36:1-24. doi: 10.1146/annurev-neuro-062111-150343.
Dendrites are the main recipients of synaptic inputs and are important sites that determine neurons' input-output functions. This review focuses on thin neocortical dendrites, which receive the vast majority of synaptic inputs in cortex but also have specialized electrogenic properties. We present a simplified working-model biophysical scheme of pyramidal neurons that attempts to capture the essence of their dendritic function, including the ability to behave under plausible conditions as dynamic computational subunits. We emphasize the electrogenic capabilities of NMDA receptors (NMDARs) because these transmitter-gated channels seem to provide the major nonlinear depolarizing drive in thin dendrites, even allowing full-blown NMDA spikes. We show how apparent discrepancies in experimental findings can be reconciled and discuss the current status of dendritic spikes in vivo; a dominant NMDAR contribution would indicate that the input-output relations of thin dendrites are dynamically set by network activity and cannot be fully predicted by purely reductionist approaches.
树突是突触输入的主要接收者,是决定神经元输入-输出功能的重要部位。本综述重点介绍薄的皮质树突,它们接收皮质中绝大多数的突触输入,但也具有特殊的发电特性。我们提出了一个简化的工作模型生物物理方案,试图捕捉锥体神经元树突功能的本质,包括在合理条件下表现为动态计算亚单位的能力。我们强调 NMDA 受体 (NMDAR) 的发电能力,因为这些递质门控通道似乎在薄树突中提供主要的非线性去极化驱动力,甚至允许完全的 NMDA 棘波。我们展示了如何调和实验结果中的明显差异,并讨论了体内树突棘的现状;NMDAR 的主要贡献表明,薄树突的输入-输出关系是由网络活动动态设定的,不能仅通过纯粹的还原论方法来完全预测。