Mamidi Rao N V S, Dallas Shannon, Sensenhauser Carlo, Lim Heng Keang, Scheers Ellen, Verboven Peter, Cuyckens Filip, Leclercq Laurent, Evans David C, Kelley Michael F, Johnson Mark D, Snoeys Jan
Preclinical Development & Safety, Janssen Research & Development, LLC, Raritan, New Jersey, USA.
Preclinical Development & Safety, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA.
Br J Clin Pharmacol. 2017 May;83(5):1082-1096. doi: 10.1111/bcp.13186. Epub 2016 Dec 20.
Canagliflozin is a recently approved drug for use in the treatment of type 2 diabetes. The potential for canagliflozin to cause clinical drug-drug interactions (DDIs) was assessed.
DDI potential of canagliflozin was investigated using in vitro test systems containing drug metabolizing enzymes or transporters. Basic predictive approaches were applied to determine potential interactions in vivo. A physiologically-based pharmacokinetic (PBPK) model was developed and clinical DDI simulations were performed to determine the likelihood of cytochrome P450 (CYP) inhibition by canagliflozin.
Canagliflozin was primarily metabolized by uridine 5'-diphospho-glucuronosyltransferase 1A9 and 2B4 enzymes. Canagliflozin was a substrate of efflux transporters (P-glycoprotein, breast cancer resistance protein and multidrug resistance-associated protein-2) but was not a substrate of uptake transporters (organic anion transporter polypeptide isoforms OATP1B1, OATP1B3, organic anion transporters OAT1 and OAT3, and organic cationic transporters OCT1, and OCT2). In inhibition assays, canagliflozin was shown to be a weak in vitro inhibitor (IC ) of CYP3A4 (27 μmol l , standard error [SE] 4.9), CYP2C9 (80 μmol l , SE 8.1), CYP2B6 (16 μmol l , SE 2.1), CYP2C8 (75 μmol l , SE 6.4), P-glycoprotein (19.3 μmol l , SE 7.2), and multidrug resistance-associated protein-2 (21.5 μmol l , SE 3.1). Basic models recommended in DDI guidelines (US Food & Drug Administration and European Medicines Agency) predicted moderate to low likelihood of interaction for these CYPs and efflux transporters. PBPK DDI simulations of canagliflozin with CYP probe substrates (simvastatin, S-warfarin, bupropion, repaglinide) did not show relevant interaction in humans since mean areas under the concentration-time curve and maximum plasma concentration ratios for probe substrates with and without canagliflozin and its 95% CIs were within 0.80-1.25.
In vitro DDI followed by a predictive or PBPK approach was applied to determine DDI potential of canagliflozin. Overall, canagliflozin is neither a perpetrator nor a victim of clinically important interactions.
卡格列净是一种最近被批准用于治疗2型糖尿病的药物。评估了卡格列净引起临床药物相互作用(DDIs)的可能性。
使用含有药物代谢酶或转运蛋白的体外测试系统研究卡格列净的DDI潜力。应用基本的预测方法来确定体内潜在的相互作用。建立了基于生理学的药代动力学(PBPK)模型,并进行了临床DDI模拟,以确定卡格列净抑制细胞色素P450(CYP)的可能性。
卡格列净主要由尿苷5'-二磷酸葡萄糖醛酸基转移酶1A9和2B4酶代谢。卡格列净是外排转运蛋白(P-糖蛋白、乳腺癌耐药蛋白和多药耐药相关蛋白-2)的底物,但不是摄取转运蛋白(有机阴离子转运多肽同工型OATP1B1、OATP1B3、有机阴离子转运蛋白OAT1和OAT3以及有机阳离子转运蛋白OCT1和OCT2)的底物。在抑制试验中,卡格列净被证明是CYP3A4(27μmol/L,标准误[SE]4.9)、CYP2C9(80μmol/L,SE 8.1)、CYP2B6(16μmol/L,SE 2.1)、CYP2C8(75μmol/L,SE 6.4)、P-糖蛋白(19.3μmol/L,SE 7.2)和多药耐药相关蛋白-2(21.5μmol/L,SE 3.1)的弱体外抑制剂(IC)。DDI指南(美国食品药品监督管理局和欧洲药品管理局)推荐的基本模型预测,这些CYP和外排转运蛋白的相互作用可能性为中度至低度。卡格列净与CYP探针底物(辛伐他汀、S-华法林、安非他酮、瑞格列奈)的PBPK DDI模拟未显示在人类中有相关相互作用,因为有和没有卡格列净时探针底物的浓度-时间曲线下平均面积和最大血浆浓度比及其95%置信区间在0.80-1.25范围内。
采用体外DDI结合预测或PBPK方法来确定卡格列净的DDI潜力。总体而言,卡格列净既不是临床重要相互作用的肇事者,也不是受害者。