Cai Ken, Yang Rongqian, Yue Hongwei, Li Lihua, Ou Shanxing, Liu Feng
School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
Department of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China.
Int J Med Robot. 2017 Sep;13(3). doi: 10.1002/rcs.1785. Epub 2016 Nov 9.
Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible.
This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation.
The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm).
Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences.
心脏计算机断层扫描(CT)图像分割是评估心脏和肺部动态功能的有效方法。在基于图谱的心脏分割方法中,分割质量通常依赖于图谱图像,而这些参考图像的选择是关键步骤。此选择过程中的最佳目标是使参考图像尽可能接近目标图像。
本研究提出一种使用非线性变形场方案的图谱动态更新算法。所提出的方法基于双源CT(DSCT)切片之间的特征。这些特征的提取将形成构建平均模型的基础,并且在配准过程中更新创建的参考图谱图像。基于非线性场的模型用于有效实现4D心脏分割。
所提出的分割框架在14个4D心脏CT序列上得到验证。该算法达到了可接受的精度(1.0 - 2.8毫米)。
我们提出的结合基于非线性场的模型和动态更新图谱策略的方法,可以为全心分割提供一种有效且准确的方式。所提出方法的成功很大程度上依赖于对图谱先验知识的有效利用以及在待分割的DSCT序列之间探索的相似性。