Suppr超能文献

通过评估清醒状态下自主神经对心率的影响来预测呼吸暂停低通气指数

Apnea-hypopnea index prediction through an assessment of autonomic influence on heart rate in wakefulness.

作者信息

Jung Da Woon, Lee Yu Jin, Jeong Do-Un, Park Kwang Suk

机构信息

Interdisciplinary Program for Biomedical Engineering, Seoul National University Graduate School, Seoul, Republic of Korea.

Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine and Center for Sleep and Chronobiology, Seoul National University Hospital, Seoul, Republic of Korea.

出版信息

Physiol Behav. 2017 Feb 1;169:9-15. doi: 10.1016/j.physbeh.2016.11.013. Epub 2016 Nov 15.

Abstract

With the high prevalence of obstructive sleep apnea, the issue of developing a practical tool for obstructive sleep apnea screening has been raised. Conventional obstructive sleep apnea screening tools are limited in their ability to help clinicians make rational decisions due to their inability to predict the apnea-hypopnea index. Our study aimed to develop a new prediction model that can provide a reliable apnea-hypopnea index value during wakefulness. We hypothesized that patients with more severe obstructive sleep apnea would exhibit more attenuated waking vagal tone, which may result in lower effectiveness in decreasing heart rate as a response to deep inspiration breath-holding. Prior to conducting nocturnal in-laboratory polysomnography, 30 non-obstructive sleep apnea (apnea-hypopnea index<5events/h) subjects and 246 patients with obstructive sleep apnea participated in a 75-second experiment that consisted of a 60-second baseline measurement and consecutive 15-second deep inspiration breath-hold sessions. Two apnea-hypopnea index predictors were devised by considering the vagal activities reflected in the electrocardiographic recordings acquired during the experiment. Using the predictors obtained from 184 individuals, regression analyses and k-fold cross-validation tests were performed to develop an apnea-hypopnea index prediction model. For the remaining 92 individuals, the developed model provided an absolute error (mean±SD) of 3.53±2.67events/h and a Pearson's correlation coefficient of 0.99 (P<0.01) between the apnea-hypopnea index predictive values and the reference values reported by polysomnography. Our study is the first to achieve reliable and time-efficient prediction of the apnea-hypopnea index during wakefulness.

摘要

随着阻塞性睡眠呼吸暂停的高患病率,开发一种用于阻塞性睡眠呼吸暂停筛查的实用工具的问题已被提出。传统的阻塞性睡眠呼吸暂停筛查工具由于无法预测呼吸暂停低通气指数,在帮助临床医生做出合理决策方面能力有限。我们的研究旨在开发一种新的预测模型,该模型可以在清醒状态下提供可靠的呼吸暂停低通气指数值。我们假设,阻塞性睡眠呼吸暂停更严重的患者会表现出更减弱的清醒迷走神经张力,这可能导致作为对深吸气屏气的反应,降低心率的有效性。在进行夜间实验室多导睡眠图检查之前,30名非阻塞性睡眠呼吸暂停(呼吸暂停低通气指数<5次/小时)受试者和246名阻塞性睡眠呼吸暂停患者参与了一项75秒的实验,该实验包括60秒的基线测量和连续15秒的深吸气屏气时段。通过考虑实验期间获得的心电图记录中反映的迷走神经活动,设计了两个呼吸暂停低通气指数预测指标。使用从184个人获得的预测指标,进行回归分析和k折交叉验证测试,以开发呼吸暂停低通气指数预测模型。对于其余92个人,所开发的模型在呼吸暂停低通气指数预测值与多导睡眠图报告的参考值之间提供了3.53±2.67次/小时的绝对误差和0.99的皮尔逊相关系数(P<0.01)。我们的研究首次实现了在清醒状态下对呼吸暂停低通气指数的可靠且高效的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验