Vandenplas J, Spehar M, Potocnik K, Gengler N, Gorjanc G
Agriculture, Bio-engineering and Chemistry Department, Gembloux Agro-Bio Tech, University of Liege, 5030 Gembloux, Belgium; National Fund for Scientific Research, 1000 Brussels, Belgium.
Croatian Agricultural Agency, 10000 Zagreb, Croatia; Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
J Dairy Sci. 2017 Jan;100(1):465-478. doi: 10.3168/jds.2016-11733. Epub 2016 Nov 17.
The aim of this paper was to develop a national single-step genomic BLUP that integrates multi-national genomic estimated breeding values (EBV) and associated reliabilities without double counting dependent data contributions from the different evaluations. Simultaneous use of all data, including phenotypes, pedigree, and genotypes, is a condition to obtain unbiased EBV. However, this condition is not always fully met, mainly due to unavailability of foreign raw data for imported animals. In dairy cattle genetic evaluations, this issue is traditionally tackled through the multiple across-country evaluation (MACE) of sires, performed by Interbull Centre (Uppsala, Sweden). Multiple across-country evaluation regresses all the available national information onto a joint pedigree to obtain country-specific rankings of all sires without sharing the raw data. In the context of genomic selection, the issue is handled by exchanging sire genotypes and by using MACE information (i.e., MACE EBV and reliabilities), as a valuable source of "phenotypic" data. Although all the available data are considered, these "multi-national" genomic evaluations use multi-step methods assuming independence of various sources of information, which is not met in all situations. We developed a method that handles this by single-step genomic evaluation that jointly (1) uses national phenotypic, genomic, and pedigree data; (2) uses multi-national genomic information; and (3) avoids double counting dependent data contributions from an animal's own records and relatives' records. The method was demonstrated by integrating multi-national genomic EBV and reliabilities of Brown Swiss sires, included in the InterGenomics consortium at Interbull Centre, into the national evaluation in Slovenia. The results showed that the method could (1) increase reliability of a national (genomic) evaluation; (2) provide consistent ranking of all animals: bulls, cows, and young animals; and (3) increase the size of a genomic training population. These features provide more efficient and transparent selection throughout a breeding program.
本文的目的是开发一种全国性的单步基因组最佳线性无偏预测法(BLUP),该方法能够整合多国基因组估计育种值(EBV)及相关可靠性,同时避免重复计算来自不同评估的相关数据贡献。同时使用所有数据(包括表型、系谱和基因型)是获得无偏估计育种值的一个条件。然而,这一条件并非总能完全满足,主要原因是进口动物的国外原始数据不可用。在奶牛遗传评估中,这个问题传统上是通过瑞典乌普萨拉国际公牛中心(Interbull Centre)对种公牛进行的多国评估(MACE)来解决的。多国评估将所有可用的国家信息回归到一个联合系谱上,以获得所有种公牛的特定国家排名,而无需共享原始数据。在基因组选择的背景下,这个问题通过交换种公牛基因型并使用MACE信息(即MACE EBV和可靠性)来处理,MACE信息是“表型”数据的宝贵来源。尽管考虑了所有可用数据,但这些“多国”基因组评估使用的是多步方法,假设各种信息来源相互独立,而这在所有情况下都无法满足。我们开发了一种方法,通过单步基因组评估来处理这个问题,该评估联合(1)使用国家表型、基因组和系谱数据;(2)使用多国基因组信息;(3)避免重复计算动物自身记录和亲属记录中的相关数据贡献。通过将国际公牛中心国际基因组学联盟(InterGenomics consortium)中包含的瑞士褐牛种公牛的多国基因组EBV和可靠性整合到斯洛文尼亚的国家评估中,对该方法进行了验证。结果表明,该方法能够(1)提高国家(基因组)评估的可靠性;(2)为所有动物(公牛、母牛和幼畜)提供一致的排名;(3)增加基因组训练群体的规模。这些特性在整个育种计划中提供了更高效、更透明的选择。