Suppr超能文献

基于星矢量与改进型当前统计模型卡尔曼滤波器的角速度估计

Angular velocity estimation based on star vector with improved current statistical model Kalman filter.

作者信息

Zhang Hao, Niu Yanxiong, Lu Jiazhen, Zhang He

出版信息

Appl Opt. 2016 Nov 20;55(33):9427-9434. doi: 10.1364/AO.55.009427.

Abstract

Angular velocity information is a requisite for a spacecraft guidance, navigation, and control system. In this paper, an approach for angular velocity estimation based merely on star vector measurement with an improved current statistical model Kalman filter is proposed. High-precision angular velocity estimation can be achieved under dynamic conditions. The amount of calculation is also reduced compared to a Kalman filter. Different trajectories are simulated to test this approach, and experiments with real starry sky observation are implemented for further confirmation. The estimation accuracy is proved to be better than 10  rad/s under various conditions. Both the simulation and the experiment demonstrate that the described approach is effective and shows an excellent performance under both static and dynamic conditions.

摘要

角速度信息是航天器制导、导航与控制系统所必需的。本文提出了一种仅基于星矢量测量,采用改进的当前统计模型卡尔曼滤波器进行角速度估计的方法。在动态条件下可实现高精度的角速度估计。与卡尔曼滤波器相比,计算量也有所减少。模拟了不同轨迹以测试该方法,并进行了真实星空观测实验以进一步验证。结果证明,在各种条件下估计精度均优于10 rad/s。仿真和实验均表明,所描述的方法是有效的,并且在静态和动态条件下均表现出优异的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验