Wang Ping, Gao Liqian, Lei Haipeng, Lee Su Seong, Yao Shao Q, Sun Hongyan
Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
Key Laboratory of Biochip Technology, Biotech and Health Centre, 15 Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China.
Methods Mol Biol. 2017;1518:67-80. doi: 10.1007/978-1-4939-6584-7_6.
Given its increasing importance in transforming biomedical research in recent years, microarray technology has become highly popular as a powerful screening platform in detecting biomolecule interactions, discovering new inhibitors, and identifying biomarkers as well as diagnosing disease. The success of microarray technology in various biological applications is highly dependent on the accessibility, the functionality, and the density of the surface bound biomolecules. Therefore, compound immobilization represents a critical step for the successful implementation of microarray screening. Herein we describe a fast and site-specific microarray immobilization approach by using trans-cyclooctene-tetrazine ligation. This approach not only ensures fast immobilization and uniform display of biomolecules, but also allows the optimum orientation of biomolecules after immobilization. All these excellent properties facilitate subsequent interactions of the biomolecules and their interacting partners during the screening process. We envision that the immobilization strategy described here can find useful applications in many other microarray related studies.
鉴于微阵列技术近年来在转化生物医学研究中日益重要,它已成为一种非常受欢迎的强大筛选平台,用于检测生物分子相互作用、发现新抑制剂、识别生物标志物以及诊断疾病。微阵列技术在各种生物学应用中的成功高度依赖于表面结合生物分子的可及性、功能和密度。因此,化合物固定是微阵列筛选成功实施的关键步骤。在此,我们描述了一种通过使用反式环辛烯-四嗪连接实现快速且位点特异性的微阵列固定方法。这种方法不仅确保生物分子的快速固定和均匀展示,还能使生物分子在固定后实现最佳取向。所有这些优异特性都有助于在筛选过程中生物分子与其相互作用伙伴之间的后续相互作用。我们设想这里描述的固定策略可以在许多其他与微阵列相关的研究中找到有用的应用。