Suppr超能文献

调控转录因子的古老微小RNA家族在植物辐射过程中被优先保留。

Ancient microRNA families that regulate transcription factors are preferentially preserved during plant radiation.

作者信息

Shi Tao, Wang Kun, Yang Pingfang

机构信息

a Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of Chinese Academy of Sciences , Wuhan , China.

b School of Life Sciences, Wuhan University , Wuhan , China.

出版信息

Plant Signal Behav. 2016 Dec;11(12):e1261233. doi: 10.1080/15592324.2016.1261233.

Abstract

Essential genes are usually less likely to be lost during evolution, whereas dispensable genes are lost more frequently. Integrating sacred lotus and other plant microRNA (miRNA) data, we found different ancient miRNA families that arose before eudicot radiation exhibit different evolutionary trajectories. Those ancient miRNA families with higher copy and target numbers, and older age are more likely to be retained in plant descendants and more conserved in (hairpin-structured) miRNA gene sequences. Interestingly, a large portion of the well conserved miRNA families in plant lineages can target transcription factors (TFs). Also, we found miRNA families that target TFs are preferentially retained after sacred lotus genome duplication. In this article, we provide some points to discuss why miRNA families that regulate TFs are more likely to be preserved in plants.

摘要

必需基因在进化过程中通常不太可能丢失,而可有可无的基因则更频繁地丢失。整合荷花和其他植物的微小RNA(miRNA)数据,我们发现真双子叶植物辐射之前出现的不同古老miRNA家族表现出不同的进化轨迹。那些具有更高拷贝数和靶标数且起源更早的古老miRNA家族更有可能保留在植物后代中,并且在(发夹结构的)miRNA基因序列中更保守。有趣的是,植物谱系中大部分高度保守的miRNA家族可以靶向转录因子(TFs)。此外,我们发现靶向TFs的miRNA家族在荷花基因组加倍后优先保留。在本文中,我们提供了一些要点来讨论为什么调控TFs的miRNA家族更有可能在植物中保留下来。

相似文献

1
Ancient microRNA families that regulate transcription factors are preferentially preserved during plant radiation.
Plant Signal Behav. 2016 Dec;11(12):e1261233. doi: 10.1080/15592324.2016.1261233.
2
The evolution of plant microRNAs: insights from a basal eudicot sacred lotus.
Plant J. 2017 Feb;89(3):442-457. doi: 10.1111/tpj.13394. Epub 2017 Feb 1.
3
Evolution of plant microRNA gene families.
Cell Res. 2007 Mar;17(3):212-8. doi: 10.1038/sj.cr.7310113.
4
Evolution and functional diversification of MIRNA genes.
Plant Cell. 2011 Feb;23(2):431-42. doi: 10.1105/tpc.110.082784. Epub 2011 Feb 11.
5
Plant microRNAs: an insight into their gene structures and evolution.
Semin Cell Dev Biol. 2010 Oct;21(8):782-9. doi: 10.1016/j.semcdb.2010.07.009. Epub 2010 Aug 4.
6
Origins and evolution of microRNA genes in plant species.
Genome Biol Evol. 2012;4(3):230-9. doi: 10.1093/gbe/evs002. Epub 2012 Jan 4.
7
The sacred lotus genome provides insights into the evolution of flowering plants.
Plant J. 2013 Nov;76(4):557-67. doi: 10.1111/tpj.12313. Epub 2013 Oct 11.
8
Practical halving; the Nelumbo nucifera evidence on early eudicot evolution.
Comput Biol Chem. 2014 Jun;50:75-81. doi: 10.1016/j.compbiolchem.2014.01.010. Epub 2014 Jan 26.
9
Plant miRNA Conservation and Evolution.
Methods Mol Biol. 2019;1932:41-50. doi: 10.1007/978-1-4939-9042-9_3.

引用本文的文献

2
Low genetic diversity and functional constraint of miRNA genes participating pollen-pistil interaction in rice.
Plant Mol Biol. 2017 Sep;95(1-2):89-98. doi: 10.1007/s11103-017-0638-0. Epub 2017 Jul 22.

本文引用的文献

1
The evolution of plant microRNAs: insights from a basal eudicot sacred lotus.
Plant J. 2017 Feb;89(3):442-457. doi: 10.1111/tpj.13394. Epub 2017 Feb 1.
3
Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses.
Nucleic Acids Res. 2016 Apr 20;44(7):3147-64. doi: 10.1093/nar/gkv1463. Epub 2015 Dec 17.
4
Analysis of phosphoproteome in rice pistil.
Proteomics. 2014 Oct;14(20):2319-34. doi: 10.1002/pmic.201400004. Epub 2014 Sep 8.
5
Receptor-like kinases: key regulators of plant development and defense.
J Integr Plant Biol. 2013 Dec;55(12):1184-7. doi: 10.1111/jipb.12129.
6
Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions.
PLoS Genet. 2012 Jan;8(1):e1002419. doi: 10.1371/journal.pgen.1002419. Epub 2012 Jan 5.
7
The regulatory activities of plant microRNAs: a more dynamic perspective.
Plant Physiol. 2011 Dec;157(4):1583-95. doi: 10.1104/pp.111.187088. Epub 2011 Oct 14.
8
Ubiquitination of transporters at the forefront of plant nutrition.
Plant Signal Behav. 2011 Oct;6(10):1597-9. doi: 10.4161/psb.6.10.17134. Epub 2011 Oct 1.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验