School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, 98105, USA.
Ecol Appl. 2016 Dec;26(8):2693-2705. doi: 10.1002/eap.1417. Epub 2016 Nov 22.
Predator-prey interactions shape ecosystem structure and function, potentially limiting the productivity of valuable species. Simultaneously, stochastic environmental forcing affects species productivity, often through unknown mechanisms. The interacting effects of trophic and environmental conditions complicate management of exploited ecosystems and have motivated calls for more holistic management via ecosystem-based approaches, yet the limitations to these approaches are not widely appreciated. The Chignik salmon fishery in Alaska is managed to achieve maximum sustainable yield for sockeye salmon, though research suggests that predation by less economically valuable, and thus not targeted, coho salmon during juvenile rearing limits the productivity of sockeye salmon. We examined the relationship between historical sockeye salmon recruitment and coho salmon abundance observed in the Chignik system and could not detect a clear effect of coho salmon abundance on sockeye salmon productivity, given existing data. Using simulation models, we examined the probability of detecting a known predation effect on sockeye salmon recruitment in the presence of observation error in coho salmon abundance and stochasticity in sockeye salmon recruitment. Increased recruitment stochasticity reduced the ability to detect predator effects in recruitment, an effect further strengthened when low frequency environmental variation was added to the system. Further, increased observation error biased estimates of predator effects towards zero. Thus, in systems with high observation error on predator abundances, estimates of predation effects will be substantially weaker than true effects. We examined the effects of stochasticity on the ability of an adaptive management program to learn about ecosystem structure and detect an effect of management actions intended to release a prey species from its predators. Simulation models revealed that even under scenarios of large predation effects on sockeye salmon, stochastic recruitment masked detection of an effect of increased coho salmon harvest for nearly a decade. These results highlight the challenges inherent in ecosystem-based management of predator-prey systems due to mismatched timescales of ecosystem dynamics and the willingness of stakeholders to risk losses in order to test uncertain hypotheses. It is critical for stakeholders considering EBFM (ecosystem-based fisheries management) and adaptive management strategies to be aware of the potential timelines of perceiving ecosystem change.
捕食者-猎物相互作用塑造了生态系统的结构和功能,可能限制了有价值物种的生产力。同时,随机的环境胁迫会影响物种的生产力,通常通过未知的机制。营养和环境条件的相互作用使受捕捞的生态系统的管理变得复杂,并促使人们呼吁通过基于生态系统的方法进行更全面的管理,但这些方法的局限性尚未得到广泛认识。阿拉斯加的奇尼克鲑鱼渔业是为了实现红鲑的最大可持续产量而进行管理的,尽管研究表明,在幼鱼养殖期间,经济价值较低且因此不受关注的银鲑捕食会限制红鲑的生产力。我们研究了历史上奇尼克系统中红鲑的补充数量与银鲑数量之间的关系,在现有数据的情况下,无法检测到银鲑数量对红鲑生产力的明显影响。我们使用模拟模型,在银鲑数量观测存在误差和红鲑补充存在随机性的情况下,研究了检测捕食者对红鲑补充数量的已知影响的可能性。增加补充数量的随机性降低了在补充数量中检测捕食者影响的能力,当系统中加入低频环境变化时,这种影响进一步加强。此外,观测误差的增加会使对捕食者影响的估计偏向于零。因此,在对捕食者丰度的观测误差较高的系统中,对捕食者影响的估计将远远弱于真实影响。我们研究了随机性对自适应管理计划了解生态系统结构和检测旨在将猎物物种从其捕食者中释放出来的管理措施效果的能力的影响。模拟模型显示,即使在对红鲑有较大捕食影响的情况下,随机补充数量也几乎掩盖了近十年内增加银鲑捕捞量对红鲑的影响的检测。这些结果突出了由于生态系统动态的时间尺度不匹配以及利益相关者愿意冒险损失以测试不确定的假设,基于生态系统的捕食者-猎物系统管理所固有的挑战。考虑基于生态系统的渔业管理 (EBFM) 和自适应管理策略的利益相关者必须意识到感知生态系统变化的潜在时间框架。