Suppr超能文献

多分辨率下时变天气集合的可视化。

Visualization of Time-Varying Weather Ensembles across Multiple Resolutions.

出版信息

IEEE Trans Vis Comput Graph. 2017 Jan;23(1):841-850. doi: 10.1109/TVCG.2016.2598869.

Abstract

Uncertainty quantification in climate ensembles is an important topic for the domain scientists, especially for decision making in the real-world scenarios. With powerful computers, simulations now produce time-varying and multi-resolution ensemble data sets. It is of extreme importance to understand the model sensitivity given the input parameters such that more computation power can be allocated to the parameters with higher influence on the output. Also, when ensemble data is produced at different resolutions, understanding the accuracy of different resolutions helps the total time required to produce a desired quality solution with improved storage and computation cost. In this work, we propose to tackle these non-trivial problems on the Weather Research and Forecasting (WRF) model output. We employ a moment independent sensitivity measure to quantify and analyze parameter sensitivity across spatial regions and time domain. A comparison of clustering structures across three resolutions enables the users to investigate the sensitivity variation over the spatial regions of the five input parameters. The temporal trend in the sensitivity values is explored via an MDS view linked with a line chart for interactive brushing. The spatial and temporal views are connected to provide a full exploration system for complete spatio-temporal sensitivity analysis. To analyze the accuracy across varying resolutions, we formulate a Bayesian approach to identify which regions are better predicted at which resolutions compared to the observed precipitation. This information is aggregated over the time domain and finally encoded in an output image through a custom color map that guides the domain experts towards an adaptive grid implementation given a cost model. Users can select and further analyze the spatial and temporal error patterns for multi-resolution accuracy analysis via brushing and linking on the produced image. In this work, we collaborate with a domain expert whose feedback shows the effectiveness of our proposed exploration work-flow.

摘要

气候集合中的不确定性量化是领域科学家的一个重要课题,特别是在现实场景中的决策制定方面。有了强大的计算机,模拟现在可以产生时变的和多分辨率的集合数据集。了解给定输入参数的模型敏感性非常重要,以便将更多的计算能力分配给对输出有更高影响的参数。此外,当在不同的分辨率下生成集合数据时,了解不同分辨率的准确性有助于在提高存储和计算成本的情况下,用更短的总时间生成所需质量的解决方案。在这项工作中,我们提出了在天气研究和预报(WRF)模型输出上解决这些非平凡问题的方法。我们采用了一种与矩无关的灵敏度度量来量化和分析跨空间区域和时域的参数灵敏度。在三个分辨率下对聚类结构的比较使用户能够研究五个输入参数的空间区域上的灵敏度变化。通过与折线图链接的 MDS 视图探索灵敏度值的时间趋势,以实现交互刷选。将时空视图连接起来,为完整的时空灵敏度分析提供了一个全面的探索系统。为了分析不同分辨率下的准确性,我们提出了一种贝叶斯方法,以确定与观察到的降水相比,哪些区域在哪些分辨率下的预测效果更好。通过在时间域上进行聚合,最后通过自定义颜色图将信息编码到输出图像中,该颜色图通过成本模型指导领域专家实现自适应网格实现。用户可以通过刷选和在生成的图像上进行链接,选择和进一步分析多分辨率准确性分析的时空误差模式。在这项工作中,我们与一位领域专家合作,他的反馈表明了我们提出的探索工作流程的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验