Department of Automation, Xiamen University, Xiamen, Fujian, 361005 China.
Molecular and Computational Biology Program, University of Southern California, Los Angeles, California, CA 90089 USA.
Sci Rep. 2016 Nov 23;6:37243. doi: 10.1038/srep37243.
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
微生物测序数据的比较对于理解微生物群落的动态至关重要。基于比对的工具分析宏基因组数据集需要参考序列和读对齐。现有的无比对差异方法使用固定阶马尔可夫链(FOMC)对背景序列进行建模,为微生物群落的比较提供了有前景的结果。然而,在 FOMC 中,随着马尔可夫链(MC)阶数的增加,参数数量呈指数增长。在固定的高阶 MC 下,由于测序深度的限制,参数可能无法准确估计。在我们的研究中,我们研究了一种替代 FOMC 的方法,即使用数据驱动的变长度马尔可夫链(VLMC)对宏转录组数据中的背景序列进行建模。最初为长序列设计的 VLMC 被扩展应用于高通量测序reads,并开发了估计相应参数的策略。VLMC 中灵活的参数数量避免了在有限的测序深度下估计高阶 MC 的大量参数。与 FOMC 中的手动选择不同,VLMC 自适应地确定 MC 阶数。几种基于 VLMC 的 beta 多样性度量被应用于比较细菌 RNA-Seq 和宏转录组数据集。实验表明,VLMC 在转录组和宏转录组样本中对背景序列的建模优于 FOMC。一个软件流程可在 https://d2vlmc.codeplex.com 获得。
PLoS One. 2014-1-2
BMC Bioinformatics. 2014-9-10
Bioinformatics. 2004-3-22
BMC Genomics. 2017-10-3
Nucleic Acids Res. 2017-7-27
J Comput Biol. 2015-5
Biochem Biophys Res Commun. 2016-1-22
Nucleic Acids Res. 2023-5-8
BMC Bioinformatics. 2021-10-9
Front Microbiol. 2020-11-12
Front Microbiol. 2020-8-25
Microorganisms. 2019-12-24
Annu Rev Biomed Data Sci. 2018-7
Front Genet. 2019-11-21
Front Microbiol. 2018-5-3
Nucleic Acids Res. 2018-8-21
Sci Rep. 2016-5-23
Nat Commun. 2016-4-13
Bioinformatics. 2015-9-1
Proc Natl Acad Sci U S A. 2014-11-4
Genome Biol. 2014-3-3
PLoS One. 2014-1-2