Chen Shaohui, Su Hongbo, Zhang Renhua, Tian Jing, Yang Lihu
Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
Sensors (Basel). 2008 Jan 24;8(1):520-528. doi: 10.3390/s8010520.
Image fusion is a useful tool in integrating a high-resolution panchromaticimage (HRPI) with a low-resolution multispectral image (LRMI) to produce a highresolutionmultispectral image (HRMI). To date, many image fusion techniques have beendeveloped to try to improve the spatial resolution of the LRMI to that of the HRPI with itsspectral property reliably preserved. However, many studies have indicated that thereexists a trade- off between the spatial resolution improvement and the spectral propertypreservation of the LRMI, and it is difficult for the existing methods to do the best in bothaspects. Based on one minimization problem, this paper mathematically analyzes thetradeoff in fusing remote sensing images. In experiment, four fusion methods are evaluatedthrough expanded spectral angle mapper (ESAM). Results clearly prove that all the testedmethods have this property.
图像融合是一种将高分辨率全色图像(HRPI)与低分辨率多光谱图像(LRMI)进行整合以生成高分辨率多光谱图像(HRMI)的有用工具。迄今为止,已经开发了许多图像融合技术,试图将LRMI的空间分辨率提高到HRPI的空间分辨率,并可靠地保留其光谱特性。然而,许多研究表明,在提高LRMI的空间分辨率和保留其光谱特性之间存在权衡,现有方法很难在这两个方面都做到最好。基于一个最小化问题,本文对遥感图像融合中的这种权衡进行了数学分析。在实验中,通过扩展光谱角映射器(ESAM)对四种融合方法进行了评估。结果清楚地证明了所有测试方法都具有这种特性。