Qin Changbo, Jia Yangwen, Su Z, Zhou Zuhao, Qiu Yaqin, Suhui Shen
Department of Water Resources, Institute of Water Resources and Hydropower Research (IWHR), Beijing, 100038, China.
International Institute for Geo-Information Science and Earth Observation (ITC), 7500AA Enschede, The Netherlands.
Sensors (Basel). 2008 Jul 29;8(7):4441-4465. doi: 10.3390/s8074441.
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
本文研究了能否通过数据同化将遥感蒸散估算值整合到分布式水文模型中,以改善对面积为317,800平方公里的大型流域内空间水分布的预测。利用了中国海河流域2005年一系列可用的MODIS卫星图像。使用SEBS(地表能量平衡系统)算法从这些1×1公里分辨率的图像中反演蒸散量。基于物理的分布式模型WEP-L(大河流域水与能量传输过程)用于计算同年海河流域的水平衡。模型推导的流域平均蒸散估算值与遥感反演估算值之间的比较显示出良好的分段线性关系,但它们在海河流域内的空间分布有所不同。遥感得出的蒸散量在更精细的尺度上表现出变异性。使用了适用于非线性问题的扩展卡尔曼滤波(EKF)数据同化算法。同化结果表明,遥感观测在为模型空间光学水文参数化的同化系统提供空间信息方面具有潜在的重要作用。这对于大型流域,如本研究中的海河流域尤其重要。结合并整合模型模拟和遥感技术的能力与信息,可以为水文状态/通量提供最佳的时空特征,这对于增进我们对基本水文过程的了解以及解决重要的水资源管理问题既具有吸引力又很必要。