Suppr超能文献

果蝇间接飞行肌肌球蛋白重链异构体不足以将跳跃肌转变为高度拉伸激活的肌肉类型。

The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type.

作者信息

Zhao Cuiping, Swank Douglas M

机构信息

Department of Biological Sciences, Department of Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.

Department of Biological Sciences, Department of Biomedical Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York

出版信息

Am J Physiol Cell Physiol. 2017 Feb 1;312(2):C111-C118. doi: 10.1152/ajpcell.00284.2016. Epub 2016 Nov 23.

Abstract

Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (F), whereas the jump muscle produces only minimal F We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher F, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in F, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced F is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and F of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of F generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter F and hence cyclical power generation but that isoforms can only endow a muscle type with moderate F Highly SA muscle types, such as IFM, likely use a different or additional mechanism.

摘要

拉伸激活(SA)是一种力量的延迟增加,它能使周期性收缩的肌肉产生高功率和高效率。SA几乎存在于所有肌肉类型中,程度各异。在果蝇中,间接飞行肌(IFM)表现出极高的SA力量产生(F),而跳跃肌产生的F则微乎其微。我们之前发现,在跳跃肌中表达胚胎(EMB)肌球蛋白重链(MHC)同工型可将其转变为中等SA肌肉类型,并实现正向周期性功率产生。为了研究MHC同工型的差异是否足以产生更高的F,我们将IFM MHC同工型(IFI)替换到跳跃肌中。令人惊讶的是,我们发现IFI仅使F增加了1.7倍,不到之前观察到的EMB增加量的一半,且仅在高无机磷酸盐(Pi)浓度(16 mM)时才出现。相对于等长张力,这种IFI诱导的F远低于IFM中的情况,并且跳跃肌无法实现正向周期性功率产生。对照纤维的等长张力和F均随Pi浓度增加而降低。然而,对于表达IFI的纤维,只有等长张力降低。IFI纤维产生F的速率比对照纤维快约1.5倍,且两种速率均依赖于Pi。我们得出结论,MHC同工型可以改变F,从而改变周期性功率产生,但同工型只能赋予肌肉类型中等的F。高度SA的肌肉类型,如IFM,可能使用不同或额外的机制。

相似文献

1
The Drosophila indirect flight muscle myosin heavy chain isoform is insufficient to transform the jump muscle into a highly stretch-activated muscle type.
Am J Physiol Cell Physiol. 2017 Feb 1;312(2):C111-C118. doi: 10.1152/ajpcell.00284.2016. Epub 2016 Nov 23.
2
An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle.
Biophys J. 2013 Jun 18;104(12):2662-70. doi: 10.1016/j.bpj.2013.04.057.
3
Alternative versions of the myosin relay domain differentially respond to load to influence Drosophila muscle kinetics.
Biophys J. 2008 Dec;95(11):5228-37. doi: 10.1529/biophysj.108.136192. Epub 2008 Sep 19.
4
Shortening deactivation: quantifying a critical component of cyclical muscle contraction.
Am J Physiol Cell Physiol. 2022 Apr 1;322(4):C653-C665. doi: 10.1152/ajpcell.00281.2021. Epub 2021 Dec 29.
6
An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics.
Biophys J. 2006 Apr 1;90(7):2427-35. doi: 10.1529/biophysj.105.075184. Epub 2006 Jan 6.
7
Stretch activation properties of Drosophila and Lethocerus indirect flight muscle suggest similar calcium-dependent mechanisms.
Am J Physiol Cell Physiol. 2017 Dec 1;313(6):C621-C631. doi: 10.1152/ajpcell.00110.2017. Epub 2017 Aug 23.
10
The roles of troponin C isoforms in the mechanical function of Drosophila indirect flight muscle.
J Muscle Res Cell Motil. 2014 Aug;35(3-4):211-23. doi: 10.1007/s10974-014-9387-8. Epub 2014 Aug 19.

引用本文的文献

1
Stretch activation combats force loss from fatigue in fast-contracting mouse skeletal muscle fibers.
J Gen Physiol. 2025 Sep 1;157(5). doi: 10.1085/jgp.202413679. Epub 2025 Aug 11.
2
A Drosophila cardiac myosin increases jump muscle stretch activation and shortening deactivation.
Biophys J. 2025 Feb 18;124(4):651-666. doi: 10.1016/j.bpj.2025.01.001. Epub 2025 Jan 10.
3
Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in muscles.
Life Sci Alliance. 2022 Jan 7;5(4). doi: 10.26508/lsa.202101342. Print 2022 Apr.
4
Shortening deactivation: quantifying a critical component of cyclical muscle contraction.
Am J Physiol Cell Physiol. 2022 Apr 1;322(4):C653-C665. doi: 10.1152/ajpcell.00281.2021. Epub 2021 Dec 29.
5
Genetic Control of Muscle Diversification and Homeostasis: Insights from .
Cells. 2020 Jun 25;9(6):1543. doi: 10.3390/cells9061543.
6
A myosin-based mechanism for stretch activation and its possible role revealed by varying phosphate concentration in fast and slow mouse skeletal muscle fibers.
Am J Physiol Cell Physiol. 2019 Dec 1;317(6):C1143-C1152. doi: 10.1152/ajpcell.00206.2019. Epub 2019 Sep 18.
7
Five Alternative Myosin Converter Domains Influence Muscle Power, Stretch Activation, and Kinetics.
Biophys J. 2018 Mar 13;114(5):1142-1152. doi: 10.1016/j.bpj.2017.12.045.

本文引用的文献

1
The roles of troponin C isoforms in the mechanical function of Drosophila indirect flight muscle.
J Muscle Res Cell Motil. 2014 Aug;35(3-4):211-23. doi: 10.1007/s10974-014-9387-8. Epub 2014 Aug 19.
2
An embryonic myosin isoform enables stretch activation and cyclical power in Drosophila jump muscle.
Biophys J. 2013 Jun 18;104(12):2662-70. doi: 10.1016/j.bpj.2013.04.057.
3
Stretch of contracting cardiac muscle abruptly decreases the rate of phosphate release at high and low calcium.
J Biol Chem. 2012 Jul 27;287(31):25696-705. doi: 10.1074/jbc.M112.373498. Epub 2012 Jun 12.
4
Regulating the contraction of insect flight muscle.
J Muscle Res Cell Motil. 2011 Dec;32(4-5):303-13. doi: 10.1007/s10974-011-9278-1. Epub 2011 Nov 22.
5
Mechanical analysis of Drosophila indirect flight and jump muscles.
Methods. 2012 Jan;56(1):69-77. doi: 10.1016/j.ymeth.2011.10.015. Epub 2011 Nov 7.
6
Calcium and stretch activation modulate power generation in Drosophila flight muscle.
Biophys J. 2011 Nov 2;101(9):2207-13. doi: 10.1016/j.bpj.2011.09.034. Epub 2011 Nov 1.
7
X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle.
Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):120-5. doi: 10.1073/pnas.1014599107. Epub 2010 Dec 9.
8
Cardiomyopathy-linked myosin regulatory light chain mutations disrupt myosin strain-dependent biochemistry.
Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17403-8. doi: 10.1073/pnas.1009619107. Epub 2010 Sep 20.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验