Suppr超能文献

快速 X 射线记录揭示了伸展激活的昆虫飞行肌中收缩蛋白和调节蛋白的动态作用。

Fast x-ray recordings reveal dynamic action of contractile and regulatory proteins in stretch-activated insect flight muscle.

机构信息

Research and Utilization Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan.

出版信息

Biophys J. 2010 Jul 7;99(1):184-92. doi: 10.1016/j.bpj.2010.04.009.

Abstract

To assess the ability of the thin-filament regulatory system to control each stretch-activation (SA) event in the fast beating of asynchronous insect flight muscle (IFM), we obtained fast (3.4 ms/frame) and semistatic (> or = 50 ms) x-ray diffraction recordings for IFM fibers from bumblebees (beating at 170 Hz) and compared the results with those acquired in giant waterbugs (20-30 Hz) and crane flies (40 Hz, semistatic only). In contrast to the well-documented large SA force of waterbug IFMs, the SA force of bumblebee and crane fly IFMs was small compared to their large isometric force. In semistatic recordings, step-stretched bumblebee and crane fly IFMs showed smaller net SA-associated intensity changes in reflections that report myosin attachment to actin and tropomyosin movement toward its activating position. However, fast recordings on bumblebee IFMs showed a fast and large temporary reversal of intensities in these reflections, suggesting that the myosin heads supporting isometric force are dynamically replaced by SA-supporting heads, and that tropomyosin moves to and back from its inactivating position in milliseconds. In waterbug IFMs, the fast temporary reversal of intensities was not obvious. The observed rates of the attachment/detachment of myosin heads and the motion of tropomyosin are fast enough for the thin-filament regulatory system to control each SA event in fast-beating insects.

摘要

为了评估细丝调节系统控制异步昆虫飞行肌(IFM)快速跳动中每个伸展激活(SA)事件的能力,我们获得了来自大黄蜂(跳动频率为 170 Hz)的 IFM 纤维的快速(3.4 ms/帧)和半静态(>或= 50 ms)X 射线衍射记录,并将结果与巨型水蚤(20-30 Hz)和蟋蟀(40 Hz,仅半静态)获得的结果进行了比较。与水蚤 IFM 的众所周知的大 SA 力相比,大黄蜂和蟋蟀 IFM 的 SA 力与它们的等长力相比很小。在半静态记录中,步拉伸的大黄蜂和蟋蟀 IFM 在报告肌球蛋白附着到 actin 和 tropomyosin 向其激活位置运动的反射中显示出较小的净 SA 相关强度变化。然而,大黄蜂 IFM 的快速记录显示这些反射中强度的快速和大幅度暂时反转,表明支持等长力的肌球蛋白头部被支持 SA 的头部动态取代,并且 tropomyosin 在毫秒内从其失活位置移动到并返回。在水蚤 IFM 中,快速的暂时强度反转并不明显。观察到的肌球蛋白头部的附着/脱附率和 tropomyosin 的运动速度足以使细丝调节系统控制快速跳动昆虫中的每个 SA 事件。

相似文献

引用本文的文献

10
Structure, function and evolution of insect flight muscle.昆虫飞行肌肉的结构、功能与进化
Biophysics (Nagoya-shi). 2011 Feb 17;7:21-28. doi: 10.2142/biophysics.7.21. eCollection 2011.

本文引用的文献

3
A neural basis for gyroscopic force measurement in the halteres of Holorusia.霍洛鲁西亚(Holorusia)平衡棒中陀螺力测量的神经基础。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Oct;194(10):887-97. doi: 10.1007/s00359-008-0361-z. Epub 2008 Aug 27.
6
An exceptionally fast actomyosin reaction powers insect flight muscle.一种异常快速的肌动球蛋白反应为昆虫飞行肌肉提供动力。
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17543-7. doi: 10.1073/pnas.0604972103. Epub 2006 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验