Stanslowsky Nancy, Reinhardt Peter, Glass Hannes, Kalmbach Norman, Naujock Maximilian, Hensel Niko, Lübben Verena, Pal Arun, Venneri Anna, Lupo Francesca, De Franceschi Lucia, Claus Peter, Sterneckert Jared, Storch Alexander, Hermann Andreas, Wegner Florian
Department of Neurology and.
Center for Regenerative Therapies Dresden.
J Neurosci. 2016 Nov 23;36(47):12027-12043. doi: 10.1523/JNEUROSCI.0456-16.2016.
Chorea-acanthocytosis (ChAc) is a fatal neurological disorder characterized by red blood cell acanthocytes and striatal neurodegeneration. Recently, severe cell membrane disturbances based on depolymerized cortical actin and an elevated Lyn kinase activity in erythrocytes from ChAc patients were identified. How this contributes to the mechanism of neurodegeneration is still unknown. To gain insight into the pathophysiology, we established a ChAc patient-derived induced pluripotent stem cell model and an efficient differentiation protocol providing a large population of human striatal medium spiny neurons (MSNs), the main target of neurodegeneration in ChAc. Patient-derived MSNs displayed enhanced neurite outgrowth and ramification, whereas synaptic density was similar to controls. Electrophysiological analysis revealed a pathologically elevated synaptic activity in ChAc MSNs. Treatment with the F-actin stabilizer phallacidin or the Src kinase inhibitor PP2 resulted in the significant reduction of disinhibited synaptic currents to healthy control levels, suggesting a Src kinase- and actin-dependent mechanism. This was underlined by increased G/F-actin ratios and elevated Lyn kinase activity in patient-derived MSNs. These data indicate that F-actin stabilization and Src kinase inhibition represent potential therapeutic targets in ChAc that may restore neuronal function.
Chorea-acanthocytosis (ChAc) is a fatal neurodegenerative disease without a known cure. To gain pathophysiological insight, we newly established a human in vitro model using skin biopsies from ChAc patients to generate disease-specific induced pluripotent stem cells (iPSCs) and developed an efficient iPSC differentiation protocol providing striatal medium spiny neurons. Using patch-clamp electrophysiology, we detected a pathologically enhanced synaptic activity in ChAc neurons. Healthy control levels of synaptic activity could be restored by treatment of ChAc neurons with the F-actin stabilizer phallacidin and the Src kinase inhibitor PP2. Because Src kinases are involved in bridging the membrane to the actin cytoskeleton by membrane protein phosphorylation, our data suggest an actin-dependent mechanism of this dysfunctional phenotype and potential treatment targets in ChAc.
舞蹈病-棘红细胞增多症(ChAc)是一种致命的神经疾病,其特征为红细胞棘状细胞增多和纹状体神经变性。最近,在ChAc患者的红细胞中发现了基于解聚的皮质肌动蛋白的严重细胞膜紊乱以及升高的Lyn激酶活性。这如何导致神经变性机制仍不清楚。为了深入了解病理生理学,我们建立了一个源自ChAc患者的诱导多能干细胞模型和一个有效的分化方案,可提供大量人类纹状体中型多棘神经元(MSN),这是ChAc中神经变性的主要靶点。源自患者的MSN显示出增强的神经突生长和分支,而突触密度与对照组相似。电生理分析显示ChAc MSN中突触活性在病理上升高。用F-肌动蛋白稳定剂鬼笔环肽或Src激酶抑制剂PP2处理可使去抑制的突触电流显著降低至健康对照水平,提示存在Src激酶和肌动蛋白依赖性机制。患者来源的MSN中G/F-肌动蛋白比率增加和Lyn激酶活性升高也证实了这一点。这些数据表明,F-肌动蛋白稳定和Src激酶抑制是ChAc中可能恢复神经元功能的潜在治疗靶点。
舞蹈病-棘红细胞增多症(ChAc)是一种致命的神经退行性疾病,尚无已知的治愈方法。为了深入了解病理生理学,我们新建立了一种人类体外模型,使用ChAc患者的皮肤活检样本生成疾病特异性诱导多能干细胞(iPSC),并开发了一种有效的iPSC分化方案来提供纹状体中型多棘神经元。使用膜片钳电生理学,我们在ChAc神经元中检测到病理上增强的突触活性。用F-肌动蛋白稳定剂鬼笔环肽和Src激酶抑制剂PP2处理ChAc神经元可恢复突触活性的健康对照水平。由于Src激酶通过膜蛋白磷酸化参与将膜与肌动蛋白细胞骨架连接起来,我们的数据表明这种功能失调表型存在肌动蛋白依赖性机制以及ChAc中的潜在治疗靶点。