Priotti Josefina, Codina Ana V, Leonardi Darío, Vasconi María D, Hinrichsen Lucila I, Lamas María C
IQUIR-CONICET, Suipacha 570, 2000, Rosario, Argentina.
Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100, S2000KTR, Rosario, Argentina.
AAPS PharmSciTech. 2017 May;18(4):947-956. doi: 10.1208/s12249-016-0659-z. Epub 2016 Nov 23.
The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.
口服途径在剂型给药方面具有显著优势。要解决的最重要问题之一是大多数药物溶解度差,这会导致生物利用度低和递送问题,这是制药行业面临的一项重大挑战。阿苯达唑是一种氨基甲酸酯类苯并咪唑,由于其广泛的活性谱和低成本,被广泛用于口服化疗以对抗肠道寄生虫。然而,其主要缺点是由于在水中的溶解度极低,导致生物利用度差。本研究的主要目的是通过自下而上的技术制备微晶制剂,以提高阿苯达唑的溶解速率,从而增强其抗寄生虫活性。因此,制备了20种基于壳聚糖、纤维素衍生物和泊洛沙姆作为表面活性剂的新型微结构,并通过其物理化学性质和体外生物活性进行了表征。为了确定聚合物的类型和浓度以及晶体中表面活性剂的存在与否的重要性,采用三因素方差分析对曲线下面积、阿苯达唑微晶溶解度和30分钟时药物释放率(%)等变量进行了分析。该分析表明,用羟乙基纤维素或壳聚糖制成的微晶似乎是优化活性药物成分口服吸收的最佳选择。对旋毛虫成虫形式的驱虫活性的体外评估确定系统S10A是最有效的,是体内测试治疗效果的首选。