Department of Physics, Capital Normal University, Beijing, 100048, China.
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China.
Sci Rep. 2016 Nov 24;6:37679. doi: 10.1038/srep37679.
We study the ground-state behavior of a Bose-Einstein Condensate (BEC) in a Raman-laser-assisted one-dimensional (1D) optical lattice potential forming a multilayer system. We find that, such system can be described by an effective model with spin-orbit coupling (SOC) of pseudospin (N-1)/2, where N is the number of layers. Due to the intricate interplay between atomic interactions, SOC and laser-assisted tunnelings, the ground-state phase diagrams generally consist of three phases-a stripe, a plane wave and a normal phase with zero-momentum, touching at a quantum tricritical point. More important, even though the single-particle states only minimize at zero-momentum for odd N, the many-body ground states may still develop finite momenta. The underlying mechanisms are elucidated. Our results provide an alternative way to realize an effective spin-orbit coupling of Bose gas with the Raman-laser-assisted optical lattice, and would also be beneficial to the studies on SOC effects in spinor Bose systems with large spin.
我们研究了在拉曼激光辅助的一维(1D)光学晶格势中形成的多层系统中的玻色-爱因斯坦凝聚体(BEC)的基态行为。我们发现,这样的系统可以用具有赝自旋(N-1)/2 的自旋轨道耦合(SOC)的有效模型来描述,其中 N 是层数。由于原子相互作用、SOC 和激光辅助隧道之间的复杂相互作用,基态相图通常由三个相组成——条纹相、平面波相和零动量的正常相,在量子三临界点接触。更重要的是,即使对于奇数 N,单粒子态仅在零动量处最小化,多体基态仍可能发展出有限的动量。阐明了潜在的机制。我们的结果提供了一种用拉曼激光辅助光学晶格实现玻色气体有效自旋轨道耦合的替代方法,也将有利于具有大自旋的旋量玻色系统中 SOC 效应的研究。