Suppr超能文献

脂质包覆微泡和低强度脉冲超声增强三维打印支架中人骨髓间充质干细胞的软骨分化。

Lipid Coated Microbubbles and Low Intensity Pulsed Ultrasound Enhance Chondrogenesis of Human Mesenchymal Stem Cells in 3D Printed Scaffolds.

机构信息

Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA.

Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA.

出版信息

Sci Rep. 2016 Nov 24;6:37728. doi: 10.1038/srep37728.

Abstract

Lipid-coated microbubbles are used to enhance ultrasound imaging and drug delivery. Here we apply these microbubbles along with low intensity pulsed ultrasound (LIPUS) for the first time to enhance proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in a 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) hydrogel scaffold. The hMSC proliferation increased up to 40% after 5 days of culture in the presence of 0.5% (v/v) microbubbles and LIPUS in contrast to 18% with LIPUS alone. We systematically varied the acoustic excitation parameters-excitation intensity, frequency and duty cycle-to find 30 mW/cm, 1.5 MHz and 20% duty cycle to be optimal for hMSC proliferation. A 3-week chondrogenic differentiation results demonstrated that combining LIPUS with microbubbles enhanced glycosaminoglycan (GAG) production by 17% (5% with LIPUS alone), and type II collagen production by 78% (44% by LIPUS alone). Therefore, integrating LIPUS and microbubbles appears to be a promising strategy for enhanced hMSC growth and chondrogenic differentiation, which are critical components for cartilage regeneration. The results offer possibilities of novel applications of microbubbles, already clinically approved for contrast enhanced ultrasound imaging, in tissue engineering.

摘要

脂质包覆的微泡被用于增强超声成像和药物输送。在这里,我们首次将这些微泡与低强度脉冲超声(LIPUS)结合,用于增强人骨髓间充质干细胞(hMSCs)在 3D 打印聚(乙二醇)-二丙烯酸酯(PEG-DA)水凝胶支架中的增殖和软骨分化。与单独使用 LIPUS 相比,在存在 0.5%(v/v)微泡和 LIPUS 的情况下,hMSC 的增殖在 5 天的培养后增加了 40%,而单独使用 LIPUS 则增加了 18%。我们系统地改变了声激励参数——激励强度、频率和占空比——发现 30mW/cm、1.5MHz 和 20%占空比最有利于 hMSC 的增殖。3 周的软骨分化结果表明,将 LIPUS 与微泡结合使用可使糖胺聚糖(GAG)的产生增加 17%(单独使用 LIPUS 时为 5%),使 II 型胶原的产生增加 78%(单独使用 LIPUS 时为 44%)。因此,整合 LIPUS 和微泡似乎是增强 hMSC 生长和软骨分化的有前途的策略,这是软骨再生的关键组成部分。这些结果为微泡的新应用提供了可能性,微泡已经在临床上获准用于增强超声成像,可用于组织工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c3/5121887/1510806897c0/srep37728-f1.jpg

相似文献

7
Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
Acta Biomater. 2018 Jan 15;66:166-176. doi: 10.1016/j.actbio.2017.11.020. Epub 2017 Nov 8.

引用本文的文献

1
Effectiveness of low-intensity pulsed ultrasound on osteoarthritis: molecular mechanism and tissue engineering.
Front Med (Lausanne). 2024 Apr 17;11:1292473. doi: 10.3389/fmed.2024.1292473. eCollection 2024.
2
3
Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications.
Biophys Rev (Melville). 2023 Apr 21;4(2):021301. doi: 10.1063/5.0127122. eCollection 2023 Jun.
4
Latest progress in low-intensity pulsed ultrasound for studying exosomes derived from stem/progenitor cells.
Front Endocrinol (Lausanne). 2023 Nov 28;14:1286900. doi: 10.3389/fendo.2023.1286900. eCollection 2023.
5
Development of exosome membrane materials-fused microbubbles for enhanced stability and efficient drug delivery of ultrasound contrast agent.
Acta Pharm Sin B. 2023 Dec;13(12):4983-4998. doi: 10.1016/j.apsb.2023.08.022. Epub 2023 Aug 19.
6
Musculoskeletal Biomaterials: Stimulated and Synergized with Low Intensity Pulsed Ultrasound.
J Funct Biomater. 2023 Oct 9;14(10):504. doi: 10.3390/jfb14100504.
8
Enhanced Drug Delivery System Using Mesenchymal Stem Cells and Membrane-Coated Nanoparticles.
Molecules. 2023 Feb 24;28(5):2130. doi: 10.3390/molecules28052130.
10
Advances in the application of low-intensity pulsed ultrasound to mesenchymal stem cells.
Stem Cell Res Ther. 2022 May 26;13(1):214. doi: 10.1186/s13287-022-02887-z.

本文引用的文献

2
3D printed nanocomposite matrix for the study of breast cancer bone metastasis.
Nanomedicine. 2016 Jan;12(1):69-79. doi: 10.1016/j.nano.2015.09.010. Epub 2015 Oct 22.
5
Ultrasound stimulation increases proliferation of MC3T3-E1 preosteoblast-like cells.
J Ther Ultrasound. 2014 Jan 2;2:1. doi: 10.1186/2050-5736-2-1. eCollection 2014.
6
Development of novel three-dimensional printed scaffolds for osteochondral regeneration.
Tissue Eng Part A. 2015 Jan;21(1-2):403-15. doi: 10.1089/ten.TEA.2014.0138. Epub 2014 Sep 12.
7
Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration.
Tissue Eng Part B Rev. 2015 Feb;21(1):103-14. doi: 10.1089/ten.TEB.2014.0168. Epub 2014 Sep 16.
8
3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration.
Nanomedicine (Lond). 2014 May;9(6):859-75. doi: 10.2217/nnm.14.36.
9
Biological Effects Induced by Non-thermal Ultrasound and Implications for Cancer Therapy: A Review of the Current Literature.
Technol Cancer Res Treat. 2015 Apr;14(2):221-35. doi: 10.7785/tcrt.2012.500407. Epub 2014 Nov 21.
10
Understanding ultrasound induced sonoporation: definitions and underlying mechanisms.
Adv Drug Deliv Rev. 2014 Jun;72:49-64. doi: 10.1016/j.addr.2013.11.008. Epub 2013 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验