Suppr超能文献

葡萄糖、乳酸、β-羟基丁酸、乙酸、γ-氨基丁酸和琥珀酸作为谷氨酰胺-谷氨酸/γ-氨基丁酸循环中谷氨酸和γ-氨基丁酸合成的底物。

Glucose, Lactate, β-Hydroxybutyrate, Acetate, GABA, and Succinate as Substrates for Synthesis of Glutamate and GABA in the Glutamine-Glutamate/GABA Cycle.

作者信息

Hertz Leif, Rothman Douglas L

机构信息

Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China.

Magnetic Resonance Research Center, Radiology and Biomedical Engineering, Yale University, New Haven, CT, USA.

出版信息

Adv Neurobiol. 2016;13:9-42. doi: 10.1007/978-3-319-45096-4_2.

Abstract

The glutamine-glutamate/GABA cycle is an astrocytic-neuronal pathway transferring precursors for transmitter glutamate and GABA from astrocytes to neurons. In addition, the cycle carries released transmitter back to astrocytes, where a minor fraction (~25 %) is degraded (requiring a similar amount of resynthesis) and the remainder returned to the neurons for reuse. The flux in the cycle is intense, amounting to the same value as neuronal glucose utilization rate or 75-80 % of total cortical glucose consumption. This glucose:glutamate ratio is reduced when high amounts of β-hydroxybutyrate are present, but β-hydroxybutyrate can at most replace 60 % of glucose during awake brain function. The cycle is initiated by α-ketoglutarate production in astrocytes and its conversion via glutamate to glutamine which is released. A crucial reaction in the cycle is metabolism of glutamine after its accumulation in neurons. In glutamatergic neurons all generated glutamate enters the mitochondria and its exit to the cytosol occurs in a process resembling the malate-aspartate shuttle and therefore requiring concomitant pyruvate metabolism. In GABAergic neurons one half enters the mitochondria, whereas the other one half is released directly from the cytosol. A revised concept is proposed for the synthesis and metabolism of vesicular and nonvesicular GABA. It includes the well-established neuronal GABA reuptake, its metabolism, and use for resynthesis of vesicular GABA. In contrast, mitochondrial glutamate is by transamination to α-ketoglutarate and subsequent retransamination to releasable glutamate essential for the transaminations occurring during metabolism of accumulated GABA and subsequent resynthesis of vesicular GABA.

摘要

谷氨酰胺 - 谷氨酸/γ-氨基丁酸循环是一条星形胶质细胞 - 神经元通路,它将递质谷氨酸和γ-氨基丁酸的前体从星形胶质细胞转运至神经元。此外,该循环将释放的递质带回星形胶质细胞,其中一小部分(约25%)被降解(需要等量的重新合成),其余部分返回神经元以供再利用。该循环中的通量很大,与神经元葡萄糖利用率的值相同,或占皮质葡萄糖总消耗量的75 - 80%。当存在大量β-羟基丁酸时,这种葡萄糖与谷氨酸的比例会降低,但在清醒的脑功能期间,β-羟基丁酸最多可替代60%的葡萄糖。该循环由星形胶质细胞中α-酮戊二酸的产生及其通过谷氨酸转化为释放的谷氨酰胺启动。该循环中的一个关键反应是谷氨酰胺在神经元中积累后的代谢。在谷氨酸能神经元中,所有生成的谷氨酸都进入线粒体,其进入细胞质的过程类似于苹果酸 - 天冬氨酸穿梭,因此需要伴随丙酮酸代谢。在γ-氨基丁酸能神经元中,一半进入线粒体,而另一半直接从细胞质中释放。针对囊泡型和非囊泡型γ-氨基丁酸的合成与代谢提出了一个修订概念。它包括已确立的神经元γ-氨基丁酸再摄取、其代谢以及用于囊泡型γ-氨基丁酸的重新合成。相比之下,线粒体谷氨酸通过转氨生成α-酮戊二酸,随后再转氨生成可释放的谷氨酸,这对于积累的γ-氨基丁酸代谢过程中发生的转氨反应以及随后囊泡型γ-氨基丁酸的重新合成至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验