Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Centre for Integrative Genomics, Lausanne University, Génopode Building, 1015 Lausanne, Switzerland.
Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
Curr Biol. 2016 Dec 19;26(24):3320-3326. doi: 10.1016/j.cub.2016.10.031. Epub 2016 Nov 23.
Plants in dense vegetation perceive their neighbors primarily through changes in light quality. Initially, the ratio between red (R) and far-red (FR) light decreases due to reflection of FR by plant tissue well before shading occurs. Perception of low R:FR by the phytochrome photoreceptors induces the shade avoidance response [1], of which accelerated elongation growth of leaf-bearing organs is an important feature. Low R:FR-induced phytochrome inactivation leads to the accumulation and activation of the transcription factors PHYTOCHROME-INTERACTING FACTORs (PIFs) 4, 5, and 7 and subsequent expression of their growth-mediating targets [2, 3]. When true shading occurs, transmitted light is especially depleted in red and blue (B) wavelengths, due to absorption by chlorophyll [4]. Although the reduction of blue wavelengths alone does not occur in nature, long-term exposure to low B light induces a shade avoidance-like response that is dependent on the cryptochrome photoreceptors and the transcription factors PIF4 and PIF5 [5-7]. We show in Arabidopsis thaliana that low B in combination with low R:FR enhances petiole elongation similar to vegetation shade, providing functional context for a low B response in plant competition. Low B potentiates the low R:FR response through PIF4, PIF5, and PIF7, and it involves increased PIF5 abundance and transcriptional changes. Low B attenuates a low R:FR-induced negative feedback loop through reduced gene expression of negative regulators and reduced HFR1 levels. The enhanced response to combined phytochrome and cryptochrome inactivation shows how multiple light cues can be integrated to fine-tune the plant's response to a changing environment.
在茂密的植被中,植物主要通过光质的变化来感知周围的环境。最初,由于植物组织对远红光(FR)的反射,在出现阴影之前,红光(R)与远红光(FR)的比值会降低。植物色素光受体对低 R:FR 的感知会诱导避荫反应[1],其中叶器官的加速伸长生长是一个重要特征。低 R:FR 诱导的植物色素失活导致转录因子 PHYTOCHROME-INTERACTING FACTORS(PIFs)4、5 和 7 的积累和激活,以及它们生长调节靶点的后续表达[2,3]。当真正出现阴影时,由于叶绿素的吸收,透过的光尤其会缺少红光和蓝光(B)波长[4]。尽管自然中不会单独减少蓝光波长,但长期暴露于低 B 光会诱导出一种类似避荫的反应,这种反应依赖于隐花色素光受体以及转录因子 PIF4 和 PIF5[5-7]。我们在拟南芥中表明,低 B 与低 R:FR 结合可增强叶柄伸长,类似于植被遮荫,为植物竞争中的低 B 反应提供了功能背景。低 B 通过 PIF4、PIF5 和 PIF7 增强低 R:FR 反应,并涉及 PIF5 丰度的增加和转录变化。低 B 通过减少负调节因子的基因表达和降低 HFR1 水平来减弱低 R:FR 诱导的负反馈环。对组合的植物色素和隐花色素失活的增强反应表明,多种光信号可以被整合以微调植物对不断变化的环境的反应。