Suppr超能文献

The 'Arm Force Field' method to predict manual arm strength based on only hand location and force direction.

作者信息

La Delfa Nicholas J, Potvin Jim R

机构信息

Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.

Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada.

出版信息

Appl Ergon. 2017 Mar;59(Pt A):410-421. doi: 10.1016/j.apergo.2016.09.012. Epub 2016 Oct 15.

Abstract

This paper describes the development of a novel method (termed the 'Arm Force Field' or 'AFF') to predict manual arm strength (MAS) for a wide range of body orientations, hand locations and any force direction. This method used an artificial neural network (ANN) to predict the effects of hand location and force direction on MAS, and included a method to estimate the contribution of the arm's weight to the predicted strength. The AFF method predicted the MAS values very well (r = 0.97, RMSD = 5.2 N, n = 456) and maintained good generalizability with external test data (r = 0.842, RMSD = 13.1 N, n = 80). The AFF can be readily integrated within any DHM ergonomics software, and appears to be a more robust, reliable and valid method of estimating the strength capabilities of the arm, when compared to current approaches.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验