Patche Jessica, Girard Dorothée, Catan Aurélie, Boyer Florence, Dobi Anthony, Planesse Cynthia, Diotel Nicolas, Guerin-Dubourg Alexis, Baret Pascal, Bravo Susana B, Paradela-Dobarro Beatriz, Álvarez Ezequiel, Essop M Faadiel, Meilhac Olivier, Bourdon Emmanuel, Rondeau Philippe
Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France.
Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, Sainte-Clotilde, France; Centre Hospitalier Gabriel Martin, Saint-Paul de La Réunion, France.
Free Radic Biol Med. 2017 Jan;102:133-148. doi: 10.1016/j.freeradbiomed.2016.11.026. Epub 2016 Nov 24.
Increased oxidative stress and advanced glycation end-product (AGE) formation are major contributors to the development of type 2 diabetes. Here plasma proteins e.g. albumin can undergo glycoxidation and play a key role in diabetes onset and related pathologies. However, despite recent progress linking albumin-AGE to increased oxidative stress and downstream effects, its action in metabolic organs such as the liver remains to be elucidated. The current study therefore investigated links between oxidative perturbations and biochemical/structural modifications of plasma albumin, and subsequent downstream effects in transgenic db/db mouse livers and HepG2 cells, respectively. Our data reveal increased oxidative stress biomarkers and lipid accumulation in plasma and livers of diabetic mice, together with albumin glycoxidation. Purified mouse albumin modifications resembled those typically found in diabetic patients, i.e. degree of glycation, carbonylation, AGE levels and in terms of chemical composition. Receptor for AGE expression and reactive oxygen species production were upregulated in db/db mouse livers, together with impaired proteolytic, antioxidant and mitochondrial respiratory activities. In parallel, acute exposure of HepG2 cells to glycated albumin also elicited intracellular free radical formation. Together this study demonstrates that AGE-modified albumin can trigger damaging effects on the liver, i.e. by increasing oxidative stress, attenuating antioxidant capacity, and by impairment of hepatic proteolytic and respiratory chain enzyme activities.
氧化应激增加和晚期糖基化终产物(AGE)形成是2型糖尿病发展的主要促成因素。在这里,血浆蛋白如白蛋白会发生糖氧化,并在糖尿病发病及相关病理过程中起关键作用。然而,尽管最近在将白蛋白-AGE与氧化应激增加及下游效应联系起来方面取得了进展,但其在肝脏等代谢器官中的作用仍有待阐明。因此,本研究分别调查了转基因db/db小鼠肝脏和HepG2细胞中氧化扰动与血浆白蛋白生化/结构修饰之间的联系,以及随后的下游效应。我们的数据显示,糖尿病小鼠的血浆和肝脏中氧化应激生物标志物增加以及脂质积累,同时伴有白蛋白糖氧化。纯化的小鼠白蛋白修饰类似于糖尿病患者中常见的修饰,即糖化程度、羰基化、AGE水平以及化学组成方面。db/db小鼠肝脏中AGE受体表达和活性氧生成上调,同时蛋白水解、抗氧化和线粒体呼吸活性受损。与此同时,HepG2细胞急性暴露于糖化白蛋白也会引发细胞内自由基形成。总之,本研究表明AGE修饰的白蛋白可对肝脏引发损伤作用,即通过增加氧化应激、减弱抗氧化能力以及损害肝脏蛋白水解和呼吸链酶活性。