Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV, 26505-9229, USA.
Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA.
Part Fibre Toxicol. 2022 Mar 9;19(1):18. doi: 10.1186/s12989-022-00457-y.
Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO inhalation exposure (exclusively) resulted in altered HO production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO inhalation exposure during gestation in the F0 dams would result in upregulated HO production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups.
Our results indicate upregulation of hepatic HO production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. HO production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO plasma increased HO production. Overnight exposure of these hepatocytes to F1 plasma increased HO production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO uterine artery HO production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups).
In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.
妊娠伴随着许多支持胎儿生长发育的快速生物学适应。其中对胎儿健康和发育至关重要的是母体肝脏来源的底物和血管输送之间的协调。这种关键的适应可能会因吸入毒素而脱轨。工程纳米材料(ENM)通常用于家用和工业产品以及医疗应用。因此,暴露的潜在风险仍然是一个问题,尤其是在怀孕期间。我们之前报道过,ENM 吸入会导致氧化物质的产生增加。因此,我们旨在确定 F0 孕鼠母体纳米 TiO2 吸入暴露(仅)是否会导致 HO 产生能力改变和 F0 孕鼠及其随后的 F1 幼仔下游氧化还原途径的变化。此外,我们还研究了这种情况是否会在 F1 代成年后持续存在,以及这对 F1 妊娠结局和 F2 胎儿健康和发育有何影响。我们假设 F0 孕鼠在妊娠期吸入母体纳米 TiO2 会导致 F0 孕鼠及其 F1 后代的 HO 产生增加。此外,这种毒理学损伤会导致 F1 孕鼠的妊娠血管功能障碍,导致 F2 代幼仔较小。
我们的结果表明,F0 孕鼠、8 周龄 F1 后代和妊娠第 20 天的 F1 雌性的肝 HO 产生能力上调。HO 产生能力伴随着氧化还原敏感转录因子 NF-κB 的磷酸化增加两倍。在细胞培养中,暴露于 F1-纳米 TiO2 血浆的原代肝细胞增加了 HO 的产生。这些肝细胞在一夜之间暴露于 F1 血浆中,以部分依赖 NF-κB 的方式增加了 HO 的产生能力。暴露于 F1-纳米 TiO2 的怀孕 F1 孕鼠表现出雌激素紊乱(12.12±3.1pg/ml 与 29.81±8.8pg/ml 假对照)和类似直接暴露母亲的血管功能障碍。F1-纳米 TiO2 子宫动脉的 HO 产生能力也增加了两倍。F1-纳米 TiO2 孕鼠的妊娠功能障碍导致 F1(10.22±0.6 只幼鼠与假对照 12.71±0.96 只幼鼠)和 F2 幼鼠(4.93±0.47g 与假对照幼鼠 5.78±0.09g)较小,以及 F1 雄性幼鼠较少(4.38±0.3 只与假对照 6.83±0.84 只)。
总之,本研究提供了母体吸入 ENM 后跨代氧化还原失调的关键证据。此外,在 F1-纳米 TiO2 代中观察到功能失调的妊娠结局,并影响 F2 后代的发育。总的来说,这些数据提供了强有力的初步证据,表明母体暴露于 ENM 具有强大的生物学影响,至少在两代中持续存在。