Suppr超能文献

猪升主动脉的失效:多向实验与统一的微观结构模型

Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model.

作者信息

Witzenburg Colleen M, Dhume Rohit Y, Shah Sachin B, Korenczuk Christopher E, Wagner Hallie P, Alford Patrick W, Barocas Victor H

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455.

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455.

出版信息

J Biomech Eng. 2017 Mar 1;139(3):0310051-03100514. doi: 10.1115/1.4035264.

Abstract

The ascending thoracic aorta is poorly understood mechanically, especially its risk of dissection. To make better predictions of dissection risk, more information about the multidimensional failure behavior of the tissue is needed, and this information must be incorporated into an appropriate theoretical/computational model. Toward the creation of such a model, uniaxial, equibiaxial, peel, and shear lap tests were performed on healthy porcine ascending aorta samples. Uniaxial and equibiaxial tests showed anisotropy with greater stiffness and strength in the circumferential direction. Shear lap tests showed catastrophic failure at shear stresses (150-200 kPa) much lower than uniaxial tests (750-2500 kPa), consistent with the low peel tension (∼60 mN/mm). A novel multiscale computational model, including both prefailure and failure mechanics of the aorta, was developed. The microstructural part of the model included contributions from a collagen-reinforced elastin sheet and interlamellar connections representing fibrillin and smooth muscle. Components were represented as nonlinear fibers that failed at a critical stretch. Multiscale simulations of the different experiments were performed, and the model, appropriately specified, agreed well with all experimental data, representing a uniquely complete structure-based description of aorta mechanics. In addition, our experiments and model demonstrate the very low strength of the aorta in radial shear, suggesting an important possible mechanism for aortic dissection.

摘要

人们对胸主动脉升部的力学特性了解甚少,尤其是其夹层风险。为了更好地预测夹层风险,需要更多关于该组织多维失效行为的信息,并且必须将这些信息纳入适当的理论/计算模型中。为了创建这样一个模型,对健康猪的胸主动脉升部样本进行了单轴、等双轴、剥离和剪切搭接试验。单轴和等双轴试验显示出各向异性,圆周方向的刚度和强度更大。剪切搭接试验显示,剪切应力(150 - 200kPa)下的灾难性失效远低于单轴试验(750 - 2500kPa),这与低剥离张力(约60mN/mm)一致。开发了一种新颖的多尺度计算模型,包括主动脉的失效前和失效力学。该模型的微观结构部分包括胶原增强弹性蛋白片层以及代表原纤蛋白和平滑肌的层间连接的贡献。各组成部分被表示为在临界拉伸时失效的非线性纤维。对不同实验进行了多尺度模拟,该模型在适当设定后与所有实验数据吻合良好,代表了一种独特的、基于结构的完整主动脉力学描述。此外,我们的实验和模型表明主动脉在径向剪切方面的强度非常低,这提示了主动脉夹层一个重要的可能机制。

相似文献

1
Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model.
J Biomech Eng. 2017 Mar 1;139(3):0310051-03100514. doi: 10.1115/1.4035264.
3
Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta.
J Mech Behav Biomed Mater. 2015 Oct;50:55-69. doi: 10.1016/j.jmbbm.2015.05.024. Epub 2015 Jun 4.
4
Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
Biomech Model Mechanobiol. 2021 Feb;20(1):93-106. doi: 10.1007/s10237-020-01370-z. Epub 2020 Jul 23.
6
Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta.
Ann Biomed Eng. 2022 Apr;50(4):452-466. doi: 10.1007/s10439-022-02931-2. Epub 2022 Feb 28.
7
Effect of glucose on the biomechanical function of arterial elastin.
J Mech Behav Biomed Mater. 2015 Sep;49:244-54. doi: 10.1016/j.jmbbm.2015.04.025. Epub 2015 May 14.
9

引用本文的文献

2
Dissection Propagation via Avalanches in Human Descending Thoracic Aorta: Effect of Aging.
Acta Biomater. 2025 Jun 27. doi: 10.1016/j.actbio.2025.06.056.
3
Mechanisms of aortic dissection: From pathological changes to experimental and models.
Prog Mater Sci. 2025 Apr;150. doi: 10.1016/j.pmatsci.2024.101363. Epub 2024 Sep 12.
4
Surgically induced aortic coarctation in a neonatal porcine model allows for longitudinal assessment of cardiovascular changes.
Am J Physiol Heart Circ Physiol. 2024 May 1;326(5):H1117-H1123. doi: 10.1152/ajpheart.00087.2024. Epub 2024 Mar 15.
6
A two-scale numerical study on the mechanobiology of abdominal aortic aneurysms.
J R Soc Interface. 2023 Nov;20(208):20230472. doi: 10.1098/rsif.2023.0472. Epub 2023 Nov 1.
7
The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
J Mech Behav Biomed Mater. 2023 Aug;144:105967. doi: 10.1016/j.jmbbm.2023.105967. Epub 2023 Jun 8.
8
A Hybrid Microstructural-Continuum Multiscale Approach for Modeling Hyperelastic Fibrous Soft Tissue.
J Elast. 2021 Aug;145(1-2):295-319. doi: 10.1007/s10659-021-09843-7. Epub 2021 Jun 16.
9
A discrete fiber network finite element model of arterial elastin network considering inter-fiber crosslinking property and density.
J Mech Behav Biomed Mater. 2022 Oct;134:105396. doi: 10.1016/j.jmbbm.2022.105396. Epub 2022 Jul 31.
10
Elucidating the signal for contact guidance contained in aligned fibrils with a microstructural-mechanical model.
J R Soc Interface. 2022 May;19(190):20210951. doi: 10.1098/rsif.2021.0951. Epub 2022 May 18.

本文引用的文献

2
Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging.
Interact Cardiovasc Thorac Surg. 2015 Oct;21(4):471-80. doi: 10.1093/icvts/ivv186. Epub 2015 Jul 14.
3
Biomechanical Properties of Human Ascending Thoracic Aortic Dissections.
J Biomech Eng. 2015 Aug;137(8):081013. doi: 10.1115/1.4030752. Epub 2015 Jun 24.
4
Patient specific stress and rupture analysis of ascending thoracic aneurysms.
J Biomech. 2015 Jul 16;48(10):1836-43. doi: 10.1016/j.jbiomech.2015.04.035. Epub 2015 May 2.
6
Patient-specific finite element analysis of ascending aorta aneurysms.
Am J Physiol Heart Circ Physiol. 2015 May 15;308(10):H1306-16. doi: 10.1152/ajpheart.00908.2014. Epub 2015 Mar 13.
7
Effect of aneurysm on biomechanical properties of "radially-oriented" collagen fibers in human ascending thoracic aortic media.
J Biomech. 2014 Dec 18;47(16):3820-4. doi: 10.1016/j.jbiomech.2014.10.024. Epub 2014 Oct 30.
8
Biomechanical evaluation of ascending aortic aneurysms.
Biomed Res Int. 2014;2014:820385. doi: 10.1155/2014/820385. Epub 2014 Jun 4.
10
Mechano-biology in the thoracic aortic aneurysm: a review and case study.
Biomech Model Mechanobiol. 2014 Oct;13(5):917-28. doi: 10.1007/s10237-014-0557-9. Epub 2014 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验