Suppr超能文献

考虑纤维间交联特性和密度的动脉弹性蛋白网络离散纤维网络有限元模型。

A discrete fiber network finite element model of arterial elastin network considering inter-fiber crosslinking property and density.

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA.

Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA; Division of Materials Science & Engineering, Boston University, Boston, MA, 02215, USA.

出版信息

J Mech Behav Biomed Mater. 2022 Oct;134:105396. doi: 10.1016/j.jmbbm.2022.105396. Epub 2022 Jul 31.

Abstract

Inter-fiber crosslinks within the extracellular matrix (ECM) play important roles in determining the mechanical properties of the fibrous network. Discrete fiber network (DFN) models have been used to study fibrous biological material, however the contribution of inter-fiber crosslinks to the mechanics of the ECM network is not well understood. In this study, a DFN model of arterial elastin network was developed based on measured structural features to study the contribution of inter-fiber crosslinking properties and density to the mechanics and fiber kinematics of the network. The DFN was generated by randomly placing line segments into a given domain following a fiber orientation distribution function obtained from multiphoton microscopy until a desired fiber areal fraction was reached. Intersections between the line segments were treated as crosslinks. The generated DFN model was then incorporated into an ABAQUS finite element model to simulate the network under equi- and nonequi-biaxial deformation. The inter-fiber crosslinks were modeled using connector elements with either zero (pin joint) or infinite (weld joint) rotational stiffness. Furthermore, inter-fiber crosslinking density was systematically reduced and its effect on both network- and fiber-level mechanics was studied. The DFN model showed good fitting and predicting capabilities of the stress-strain behavior of the elastin network. While the pin and weld joints do not seem to have noticeable effect on the network stress-strain behavior, the crosslinking properties can affect the local fiber mechanics and kinematics. Overall, our study suggests that inter-fiber crosslinking properties are important to the multiscale mechanics and fiber kinematics of the ECM network.

摘要

细胞外基质 (ECM) 内的纤维间交联对于确定纤维网络的机械性能起着重要作用。离散纤维网络 (DFN) 模型已被用于研究纤维状生物材料,然而纤维间交联对 ECM 网络力学的贡献还不太清楚。在这项研究中,基于测量的结构特征,开发了一种动脉弹性蛋白网络的 DFN 模型,以研究纤维间交联性质和密度对网络力学和纤维运动学的贡献。DFN 是通过在线段进入给定区域时遵循多光子显微镜获得的纤维取向分布函数,直到达到所需的纤维面积分数来生成的。线段之间的交点被视为交联。然后将生成的 DFN 模型合并到 ABAQUS 有限元模型中,以模拟等轴和非轴双轴变形下的网络。使用具有零(销钉连接)或无限(焊接连接)旋转刚度的连接器元素对纤维间交联进行建模。此外,系统地降低了纤维间交联密度,并研究了其对网络和纤维级力学的影响。DFN 模型对弹性网络的应力-应变行为具有良好的拟合和预测能力。虽然销钉和焊接接头似乎对网络的应力-应变行为没有明显影响,但交联性质可以影响局部纤维力学和运动学。总的来说,我们的研究表明,纤维间交联性质对于 ECM 网络的多尺度力学和纤维运动学很重要。

相似文献

2
Transmural variation in elastin fiber orientation distribution in the arterial wall.动脉壁中层弹力纤维取向分布的跨壁变异。
J Mech Behav Biomed Mater. 2018 Jan;77:745-753. doi: 10.1016/j.jmbbm.2017.08.002. Epub 2017 Aug 5.
5
An experimental and theoretical study on the anisotropy of elastin network.弹性蛋白网络各向异性的实验与理论研究
Ann Biomed Eng. 2009 Aug;37(8):1572-83. doi: 10.1007/s10439-009-9724-z. Epub 2009 May 30.

本文引用的文献

2
Avalanches and power law behavior in aortic dissection propagation.主动脉夹层扩展中的雪崩与幂律行为。
Sci Adv. 2020 May 22;6(21):eaaz1173. doi: 10.1126/sciadv.aaz1173. eCollection 2020 May.
5
Transmural variation in elastin fiber orientation distribution in the arterial wall.动脉壁中层弹力纤维取向分布的跨壁变异。
J Mech Behav Biomed Mater. 2018 Jan;77:745-753. doi: 10.1016/j.jmbbm.2017.08.002. Epub 2017 Aug 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验