Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany.
Department of Physics, Technical University Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany.
Sci Rep. 2016 Nov 30;6:37925. doi: 10.1038/srep37925.
Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d honeycomb halide α-RuCl. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d halides and oxides in general.
在 5d 和 4d 氧化物和卤化物中,大各向异性交换为新型磁基态和激发态开辟了道路,这在十年前是难以想象的。一个突出的例子是 Kitaev 自旋液体,它具有许多非凡的性质,如保护量子信息和出现马约拉纳费米子。在这里,我们讨论了 4d 蜂窝状卤化物 α-RuCl 中自旋液体行为的可能性。从先进的电子结构计算中,我们发现 Kitaev 相互作用是铁磁的,就像在 5d 铱蜂窝状氧化物中一样,实际上它定义了最大的超交换能量尺度。详细分析磁场依赖的磁化率也支持铁磁 Kitaev 耦合。我们使用扩展的 Kitaev-Heisenberg 自旋哈密顿量的精确对角化和密度矩阵重整化群技术,发现当施加磁场时,从交错有序到带隙自旋液体的转变迹象。我们的结果为该材料的最近磁性和光谱测量提供了一个统一的图景,并为在 d 卤化物和氧化物中实现量子自旋液体的前景开辟了新的视角。