Suppr超能文献

水凝胶界面的压弹性驱动润滑。

Poroelasticity-driven lubrication in hydrogel interfaces.

机构信息

Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, 1206 W Green St MC 244, Urbana, IL 61801, USA.

出版信息

Soft Matter. 2017 Jan 4;13(2):428-435. doi: 10.1039/c6sm02111e.

Abstract

It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m, as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe. A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.

摘要

人们普遍认为水凝胶表面很滑,摩擦系数低,但动态施加的应力会改变界面处水凝胶的组成,因为水被置换了。被压缩的水凝胶不能膨胀到平衡状态,其产生的渗透压失衡应该会阻碍其滑动。本文展示了多孔弹性在水凝胶-玻璃界面摩擦中的驱动作用,具体说明了水凝胶的多孔弹性松弛如何增加附着力。我们将粘附功转化为有效表面能密度,该密度随施加压力的持续时间从 10 到 50 mJ m 增加,这是通过微压痕测量得出的。从基于面积的表面能混合规则推导出了静态摩擦系数模型,并预测了在起始滑动时摩擦系数的变化。对于动摩擦,接触时间和松弛时间之间的竞争由接触 Peclet 数 Pe 来量化。一个在微米尺度上的单个长度参数可以将这两个模型拟合到实验微摩擦数据上。这些模型预测了施加压力的持续时间较短和滑动速度较快如何不会破坏界面水合作用,从而保持低摩擦。在界面排水占主导地位的低速度下,渗透压吸力会增加摩擦。通过微压痕进行附着力表征后的摩擦系数预测利用了多孔弹性、附着力和摩擦之间的相互作用。这种方法为预测和设计水凝胶界面摩擦提供了一个起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验