Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark.
J Magn Reson Imaging. 2017 Aug;46(2):537-549. doi: 10.1002/jmri.25549. Epub 2016 Nov 30.
To present and quantify the performance of a method to compute tissue hemodynamic parameters from dynamic susceptibility contrast (DSC) MRI data in brain tissue with possible nonintact blood-brain barrier.
We propose a Bayesian scheme to obtain perfusion metrics, including capillary transit-time heterogeneity (CTH), from DSC-MRI data in the presence of contrast agent extravasation. Initial performance assessment is performed through simulations. Next, we assessed possible over- or under correction for tracer extravasation in two patients receiving contrast agent preloading and two patients not receiving preloading. Perfusion metrics for N = 60 patients diagnosed with either grade III (N = 14) or grade IV gliomas (N = 46) were analyzed across tissue types to evaluate the ability to distinguish regions with different hemodynamic patterns. Finally, N = 4 patient cases undergoing anti-angiogenic treatment are evaluated qualitatively for treatment effects. All patient data were acquired at 3.0 Tesla.
The simulation studies showed good robustness against low signal-to-noise ratios, exemplified with Pearson correlations of R = 0.833 (mean transit time) and R = 0.738 (CTH) at signal-to-noise ratio = 20. Region-of-interest analysis of the N = 60 glioma patients showed that cerebral blood volume (CBV) significantly separated enhancing core from edema (grade IV: P < 10 , grade III: P < 0.05) and enhancing core from normal appearing ipsilateral white matter (NAWM) (grade IV: P < 10 , grade III: P < 0.05). The microvascular parameters were particularly good in separating edematous tissue from NAWM tissue in grade IV gliomas (P < 0.001). Finally, CTH separated grade III and grade IV core tissue (P < 0.05).
We have demonstrated robustness of the proposed Bayesian algorithm against experimental noise and demonstrated complementary value in microvascular parameters to the CBV parameter in separating tissue types in gliomas.
3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:537-549.
提出并量化一种从可能存在血脑屏障不完整的动态对比磁共振成像(DSC MRI)数据中计算组织血流动力学参数的方法,并对其进行定量分析。
理论、材料和方法:我们提出了一种贝叶斯方案,用于从 DSC-MRI 数据中获得灌注度量,包括毛细血管渡越时间异质性(CTH),并存在对比剂外渗的情况下。通过模拟进行初步性能评估。接下来,我们评估了在接受对比剂预加载的 2 名患者和未接受预加载的 2 名患者中,对比剂外渗的过度或不足校正。对 60 名诊断为 3 级(n=14)或 4 级(n=46)胶质瘤的患者进行了 n=60 次的组织类型分析,以评估区分不同血流模式区域的能力。最后,对 n=4 例接受抗血管生成治疗的患者进行定性评估,以评估治疗效果。所有患者数据均在 3.0T 下采集。
模拟研究表明,该方法对低信噪比具有很好的稳健性,以信噪比为 20 时的 Pearson 相关系数 R=0.833(平均通过时间)和 R=0.738(CTH)为例。对 n=60 例胶质瘤患者的感兴趣区域分析表明,脑血容量(CBV)显著区分了增强核心与水肿(IV 级:P<0.001,III 级:P<0.05)和增强核心与同侧正常白质(NAWM)(IV 级:P<0.001,III 级:P<0.05)。微血管参数在区分 IV 级胶质瘤的水肿组织和 NAWM 组织方面尤其有效(P<0.001)。最后,CTH 区分了 III 级和 IV 级核心组织(P<0.05)。
我们已经证明了所提出的贝叶斯算法对实验噪声的稳健性,并证明了在微血管参数方面对 CBV 参数具有补充价值,可用于区分胶质瘤中的组织类型。
3 级技术功效:2 级。J. MAGN. RESON. IMAGING 2017;46:537-549。