Suppr超能文献

用于卵巢癌早期检测和筛查的新型风险模型。

Novel risk models for early detection and screening of ovarian cancer.

作者信息

Russell Matthew R, D'Amato Alfonsina, Graham Ciaren, Crosbie Emma J, Gentry-Maharaj Aleksandra, Ryan Andy, Kalsi Jatinderpal K, Fourkala Evangelia-Ourania, Dive Caroline, Walker Michael, Whetton Anthony D, Menon Usha, Jacobs Ian, Graham Robert L J

机构信息

Stoller Biomarker Discovery Centre and Pathology Node, Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

School of Healthcare Science, Manchester Metropolitan University, UK.

出版信息

Oncotarget. 2017 Jan 3;8(1):785-797. doi: 10.18632/oncotarget.13648.

Abstract

PURPOSE

Ovarian cancer (OC) is the most lethal gynaecological cancer. Early detection is required to improve patient survival. Risk estimation models were constructed for Type I (Model I) and Type II (Model II) OC from analysis of Protein Z, Fibronectin, C-reactive protein and CA125 levels in prospectively collected samples from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).

RESULTS

Model I identifies cancers earlier than CA125 alone, with a potential lead time of 3-4 years. Model II detects a number of high grade serous cancers at an earlier stage (Stage I/II) than CA125 alone, with a potential lead time of 2-3 years and assigns high risk to patients that the ROCA Algorithm classified as normal.

MATERIALS AND METHODS

This nested case control study included 418 individual serum samples serially collected from 49 OC cases and 31 controls up to six years pre-diagnosis. Discriminatory logit models were built combining the ELISA results for candidate proteins with CA125 levels.

CONCLUSIONS

These models have encouraging sensitivities for detecting pre-clinical ovarian cancer, demonstrating improved sensitivity compared to CA125 alone. In addition we demonstrate how the models improve on ROCA for some cases and outline their potential future use as clinical tools.

摘要

目的

卵巢癌(OC)是最致命的妇科癌症。需要早期检测以提高患者生存率。通过对来自英国卵巢癌筛查协作试验(UKCTOCS)的前瞻性收集样本中的蛋白Z、纤连蛋白、C反应蛋白和CA125水平进行分析,构建了I型(模型I)和II型(模型II)OC的风险估计模型。

结果

模型I比单独使用CA125能更早地识别癌症,潜在提前期为3 - 4年。模型II比单独使用CA125能在更早阶段(I/II期)检测出一些高级别浆液性癌,潜在提前期为2 - 3年,并将ROCA算法分类为正常的患者归为高风险。

材料与方法

这项巢式病例对照研究包括从49例OC病例和31例对照中连续收集的418份个体血清样本,直至诊断前六年。结合候选蛋白的ELISA结果和CA125水平建立判别逻辑模型。

结论

这些模型在检测临床前卵巢癌方面具有令人鼓舞的敏感性,与单独使用CA125相比,敏感性有所提高。此外,我们展示了这些模型在某些情况下如何优于ROCA,并概述了它们未来作为临床工具的潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f48d/5352196/209ac95c0422/oncotarget-08-785-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验