Bauer Christoph Alexander, Hansen Andreas, Grimme Stefan
Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany.
Chemistry. 2017 May 2;23(25):6150-6164. doi: 10.1002/chem.201604682. Epub 2017 Jan 16.
The fractional occupation number weighted density (FOD) analysis is explored as a general theoretical diagnostic for complicated electronic structures. Its main feature is to provide robustly and quickly the information on the localization of "hot" (strongly correlated and chemically active) electrons in a molecule. We demonstrate its usage in four different prototypical applications: 1) As a new and fast measure of the biradical character of polycyclic aromatic hydrocarbons, 2) for the selection of active orbital spaces in multiconfigurational or complete active space self consistent field (MCSCF/CASSCF) treatments, 3) as a possibility to describe molecular-energy landscapes consistently in regions with varying biradical character, as exemplified by partial double-bond torsions, and 4) as a powerful visualization method for static electron correlation effects in large biomolecules in connection with an efficient semi-empirical tight-binding molecular orbital scheme. The last application opens a full quantum-mechanical, unbiased route to the automatic detection of errors in experimental protein X-ray structures, such as false protonation states or misplaced atoms. In the first example, the complete (unfragmented) quantum-chemical calculation of the FOD for an entire metalloprotein with more than 7500 atoms is described.
分数占据数加权密度(FOD)分析作为一种用于复杂电子结构的通用理论诊断方法被加以探索。其主要特点是能够稳健且快速地提供分子中“热”(强关联且化学活性高)电子的局域化信息。我们在四个不同的典型应用中展示了它的用途:1)作为多环芳烃双自由基特征的一种新的快速度量方法;2)用于在多构型或完全活性空间自洽场(MCSCF/CASSCF)处理中选择活性轨道空间;3)作为一种在具有不同双自由基特征的区域(如部分双键扭转的情况)中一致地描述分子能量景观的可能性;4)作为一种与高效半经验紧束缚分子轨道方案相关联的用于大型生物分子中静态电子相关效应的强大可视化方法。最后一个应用为自动检测实验性蛋白质X射线结构中的错误(如错误的质子化状态或原子位置错误)开辟了一条完全量子力学的、无偏差的途径。在第一个例子中,描述了对一个具有超过7500个原子的完整金属蛋白进行FOD的完整(未碎片化)量子化学计算。