Ballard Christopher C, Esty C Clark, Egolf David A
Department of Physics, Georgetown University, Washington, DC 20057, USA.
Chaos. 2016 Nov;26(11):113101. doi: 10.1063/1.4966538.
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
平衡统计力学能够仅依据少数几个全系统性质来预测大量相互作用物体的集体行为;然而,对于呈现复杂时空行为的远离平衡系统,目前尚不存在类似的理论。我们提出了一种用于预测这类广泛系统中行为的方法,并将这些想法应用于一个典型示例,即缺陷混沌 regime 下的时空混沌一维复金兹堡 - 朗道方程。基于鲁埃勒以及克罗斯和霍恩伯格的观点,即时空混沌系统可被视为具有特征尺寸(混沌长度尺度)的弱相互作用动力学单元的集合,我们识别出潜在的中尺度混沌单元以及它们之间的有效相互作用势。我们发现,由此得到的平衡高桥模型能够准确预测粒子数的分布。这些结果表明了一种有趣的可能性,即一类远离平衡系统在粗粒度尺度上可能会被成熟的平衡统计力学理论很好地描述。