Boyden P A, Albala A, Dresdner K P
Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York.
Circ Res. 1989 Oct;65(4):955-70. doi: 10.1161/01.res.65.4.955.
Ventricular arrhythmias that accompany myocardial infarction in dogs may be secondary to the altered electrophysiological properties of the subendocardial Purkinje fibers that survive 24 hours after the coronary occlusion. To better understand the ionic mechanisms that underlie the altered electrical activity of these fibers, we have dispersed, using an enzymatic technique, Purkinje cells from the subendocardium of the infarcted ventricle (IZPCs) and compared their electrical and structural properties to Purkinje cells dispersed from fiber strands (SPCs) and from the subendocardium of the noninfarcted ventricle (NZPCs). Ultrastructural analysis of these cells shows that IZPCs contain an increased number of lipid droplets when compared with the SPCs and NZPCs. In addition, transmembrane action potentials of IZPCs have reduced resting potentials, action potential amplitudes, and upstroke velocity and are increased in duration when compared with either SPCs or NZPCs. Input resistance of IZPCs is increased over that measured in control cells (SPCs and NZPCs). Furthermore, the time course of the process of electrical restitution of action potential duration is altered in IZPCs with long action potentials. Finally, using K+-sensitive microelectrode techniques, we have determined that intracellular free K+ activity (aKi) in IZPCs (93.7 +/- 15 mM) is not significantly different from control aKi measurements (SPC, 106 +/- 13 mM; NZPC, 103 +/- 12 mM). Thus a reduction in aKi does not provide a basis for the reduced resting potentials observed in IZPCs. By studying the relation between the resting potential and log [K+]o we determined that in IZPCs with reduced resting potentials, there is a significant increase in the PNa/PK ratio when compared with control. In summary, to better understand the cellular basis of ventricular arrhythmias postinfarction, we have developed a single cell model that will allow for more rigorous electrophysiological studies of the specific ionic currents that underlie the abnormal electrophysiology.
犬心肌梗死时伴随的室性心律失常可能继发于冠状动脉闭塞24小时后存活的心内膜下浦肯野纤维电生理特性的改变。为了更好地理解这些纤维电活动改变的离子机制,我们采用酶学技术分散了梗死心室心内膜下的浦肯野细胞(IZPCs),并将其电生理和结构特性与从纤维束分散的浦肯野细胞(SPCs)以及非梗死心室心内膜下的浦肯野细胞(NZPCs)进行了比较。对这些细胞的超微结构分析表明,与SPCs和NZPCs相比,IZPCs含有更多的脂滴。此外,与SPCs或NZPCs相比,IZPCs的跨膜动作电位静息电位降低、动作电位幅度和除极速度降低,而动作电位时程延长。IZPCs的输入电阻高于对照细胞(SPCs和NZPCs)。此外,长动作电位的IZPCs动作电位时程电恢复过程的时间进程发生了改变。最后,使用钾敏感微电极技术,我们确定IZPCs的细胞内游离钾活性(aKi)(93.7±15 mM)与对照aKi测量值(SPC为106±13 mM;NZPC为103±12 mM)无显著差异。因此,aKi的降低并不能为IZPCs中观察到的静息电位降低提供依据。通过研究静息电位与log[K+]o之间的关系,我们确定静息电位降低的IZPCs与对照相比,PNa/PK比值显著增加。总之,为了更好地理解心肌梗死后室性心律失常的细胞基础,我们建立了一个单细胞模型,该模型将允许对异常电生理基础的特定离子电流进行更严格的电生理研究。