Suppr超能文献

用于计算蛋白质序列设计的几何势

Geometric Potentials for Computational Protein Sequence Design.

作者信息

Li Jie, Koehl Patrice

机构信息

Computational and Systems Biology Group, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.

Department of Computer Science and Genome Center, University of California, Davis, CA, 95616, USA.

出版信息

Methods Mol Biol. 2017;1529:125-138. doi: 10.1007/978-1-4939-6637-0_5.

Abstract

Computational protein sequence design is the rational design based on computer simulation of new protein molecules to fold to target three-dimensional structures, with the ultimate goal of designing novel functions. It requires a good understanding of the thermodynamic equilibrium properties of the protein of interest. Here, we consider the contribution of the solvent to the stability of the protein. We describe implicit solvent models, focusing on approximations of their nonpolar components using geometric potentials. We consider the surface area (SA) model in which the nonpolar solvation free energy is expressed as a sum of the contributions of all atoms, assumed to be proportional to their accessible surface areas (ASAs). We briefly review existing numerical and analytical approaches that compute the ASA. We describe in more detail the alpha shape theory as it provides a unifying mathematical framework that enables the analytical calculations of the surface area of a macromolecule represented as a union of balls.

摘要

计算蛋白质序列设计是基于计算机模拟的合理设计,旨在设计能够折叠成目标三维结构的新蛋白质分子,最终目标是设计新的功能。这需要深入了解目标蛋白质的热力学平衡特性。在此,我们考虑溶剂对蛋白质稳定性的贡献。我们描述隐式溶剂模型,重点关注使用几何势对其非极性成分的近似。我们考虑表面积(SA)模型,其中非极性溶剂化自由能表示为所有原子贡献的总和,假定与它们的可及表面积(ASA)成正比。我们简要回顾计算ASA的现有数值和分析方法。我们更详细地描述α形状理论,因为它提供了一个统一的数学框架,能够对表示为球体并集的大分子表面积进行解析计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验