Suppr超能文献

蛋白质折叠稳定性对免疫原性的影响及其对疫苗设计的意义。

Influence of protein fold stability on immunogenicity and its implications for vaccine design.

作者信息

Scheiblhofer Sandra, Laimer Josef, Machado Yoan, Weiss Richard, Thalhamer Josef

机构信息

a Department of Molecular Biology , University of Salzburg , Salzburg , Austria.

出版信息

Expert Rev Vaccines. 2017 May;16(5):479-489. doi: 10.1080/14760584.2017.1306441. Epub 2017 Mar 24.

Abstract

In modern vaccinology and immunotherapy, recombinant proteins more and more replace whole organisms to induce protective or curative immune responses. Structural stability of proteins is of crucial importance for efficient presentation of antigenic peptides on MHC, which plays a decisive role for triggering strong immune reactions. Areas covered: In this review, we discuss structural stability as a key factor for modulating the potency of recombinant vaccines and its importance for antigen proteolysis, presentation, and stimulation of B and T cells. Moreover, the impact of fold stability on downstream events determining the differentiation of T cells into effector cells is reviewed. We summarize studies investigating the impact of protein fold stability on the outcome of the immune response and provide an overview on computational methods to estimate the effects of point mutations on protein stability. Expert commentary: Based on this information, the rational design of up-to-date vaccines is discussed. A model for predicting immunogenicity of proteins based on their conformational stability at different pH values is proposed.

摘要

在现代疫苗学和免疫疗法中,重组蛋白越来越多地取代全生物体来诱导保护性或治愈性免疫反应。蛋白质的结构稳定性对于抗原肽在主要组织相容性复合体(MHC)上的有效呈递至关重要,而MHC在触发强烈免疫反应中起决定性作用。涵盖领域:在本综述中,我们讨论结构稳定性作为调节重组疫苗效力的关键因素及其对抗原蛋白水解、呈递以及B细胞和T细胞刺激的重要性。此外,还综述了折叠稳定性对决定T细胞分化为效应细胞的下游事件的影响。我们总结了研究蛋白质折叠稳定性对免疫反应结果影响的研究,并概述了用于估计点突变对蛋白质稳定性影响的计算方法。专家评论:基于这些信息,讨论了新型疫苗的合理设计。提出了一种基于蛋白质在不同pH值下的构象稳定性预测其免疫原性的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3257/5490637/5c3a16a2f9c8/ierv_a_1306441_f0001_oc.jpg

相似文献

1
Influence of protein fold stability on immunogenicity and its implications for vaccine design.
Expert Rev Vaccines. 2017 May;16(5):479-489. doi: 10.1080/14760584.2017.1306441. Epub 2017 Mar 24.
2
Vaccine technologies: From whole organisms to rationally designed protein assemblies.
Biochem Pharmacol. 2016 Nov 15;120:1-14. doi: 10.1016/j.bcp.2016.05.001. Epub 2016 May 6.
3
Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy.
Front Immunol. 2020 Feb 24;11:283. doi: 10.3389/fimmu.2020.00283. eCollection 2020.
6
Formulation and stabilization of recombinant protein based virus-like particle vaccines.
Adv Drug Deliv Rev. 2015 Oct 1;93:42-55. doi: 10.1016/j.addr.2014.10.023. Epub 2014 Oct 24.
8
Structural vaccinology: a three-dimensional view for vaccine development.
Curr Top Med Chem. 2013;13(20):2629-37. doi: 10.2174/15680266113136660187.
9
Innovations in structure-based antigen design and immune monitoring for next generation vaccines.
Curr Opin Immunol. 2020 Aug;65:50-56. doi: 10.1016/j.coi.2020.03.013. Epub 2020 Apr 22.

引用本文的文献

1
MVA-HBVac-A novel vaccine vector that allows pan-genotypic targeting of hepatitis B virus by therapeutic vaccination.
Mol Ther Nucleic Acids. 2025 Jul 23;36(3):102641. doi: 10.1016/j.omtn.2025.102641. eCollection 2025 Sep 9.
2
Membrane Expression Enhances Folding, Multimeric Structure Formation, and Immunogenicity of Viral Capsid Proteins.
ACS Infect Dis. 2025 Aug 8;11(8):2104-2115. doi: 10.1021/acsinfecdis.5c00067. Epub 2025 Jul 9.
6
Development and characterization of a low-affinity humanized CD19 chimeric antigen receptor for B-cell malignancies.
Blood Neoplasia. 2024 Oct 13;1(4):100048. doi: 10.1016/j.bneo.2024.100048. eCollection 2024 Dec.
8
Mimicking immune complexes for efficient antibody responses.
Front Immunol. 2025 Apr 28;16:1570487. doi: 10.3389/fimmu.2025.1570487. eCollection 2025.
9
A Reverse Vaccinology and Immunoinformatic Approach for the Designing of a Novel mRNA Vaccine Against Stomach Cancer Targeting the Potent Pathogenic Proteins of .
Bioinform Biol Insights. 2025 Apr 16;19:11779322251331104. doi: 10.1177/11779322251331104. eCollection 2025.
10
salivary proteins elicit human innate and adaptive immune responses detrimental to parasites.
bioRxiv. 2025 Mar 4:2025.02.25.640210. doi: 10.1101/2025.02.25.640210.

本文引用的文献

1
Geometric Potentials for Computational Protein Sequence Design.
Methods Mol Biol. 2017;1529:125-138. doi: 10.1007/978-1-4939-6637-0_5.
3
Present Yourself! By MHC Class I and MHC Class II Molecules.
Trends Immunol. 2016 Nov;37(11):724-737. doi: 10.1016/j.it.2016.08.010. Epub 2016 Sep 7.
4
Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV.
Nat Struct Mol Biol. 2016 Sep;23(9):811-820. doi: 10.1038/nsmb.3267. Epub 2016 Aug 1.
5
Relationship between the magnitude of IgE production in mice and conformational stability of the house dust mite allergen, Der p 2.
Biochim Biophys Acta. 2016 Oct;1860(10):2279-84. doi: 10.1016/j.bbagen.2016.04.014. Epub 2016 Apr 20.
6
Novel Ricin Subunit Antigens With Enhanced Capacity to Elicit Toxin-Neutralizing Antibody Responses in Mice.
J Pharm Sci. 2016 May;105(5):1603-1613. doi: 10.1016/j.xphs.2016.02.009. Epub 2016 Mar 15.
7
Follicular Helper T Cells.
Annu Rev Immunol. 2016 May 20;34:335-68. doi: 10.1146/annurev-immunol-041015-055605. Epub 2016 Feb 22.
8
TCR Signal Strength Alters T-DC Activation and Interaction Times and Directs the Outcome of Differentiation.
Front Immunol. 2016 Jan 25;7:6. doi: 10.3389/fimmu.2016.00006. eCollection 2016.
9
MAESTROweb: a web server for structure-based protein stability prediction.
Bioinformatics. 2016 May 1;32(9):1414-6. doi: 10.1093/bioinformatics/btv769. Epub 2016 Jan 6.
10
Fold stability during endolysosomal acidification is a key factor for allergenicity and immunogenicity of the major birch pollen allergen.
J Allergy Clin Immunol. 2016 May;137(5):1525-34. doi: 10.1016/j.jaci.2015.09.026. Epub 2015 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验