Carlin Jesse Lea, Jain Shalini, Gizewski Elizabeth, Wan Tina C, Tosh Dilip K, Xiao Cuiying, Auchampach John A, Jacobson Kenneth A, Gavrilova Oksana, Reitman Marc L
Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
Neuropharmacology. 2017 Mar 1;114:101-113. doi: 10.1016/j.neuropharm.2016.11.026. Epub 2016 Nov 30.
Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1, Adora3) mice. Confirming prior data, stimulation of the A adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H receptors. In contrast, AAR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective AAR agonists, including N-cyclopentyladenosine (CPA), N-cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both AAR and AAR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N-endo-norbornyladenosine], or using Adora3 mice allowed selective stimulation of AAR. AMP-stimulated hypothermia can occur independently of AAR, AAR, and mast cells. AAR and AAR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither AAR nor AAR was required for fasting-induced torpor. AAR and AAR agonists and AMP trigger regulated hypothermia via three distinct mechanisms.
小型哺乳动物能够进入蛰伏状态,即一种体温降低、代谢减缓的状态,这使得它们能够显著节约能量。给予腺苷或5'-单磷酸腺苷(AMP)可引发体温降低的蛰伏样状态。我们使用遥测技术监测野生型和受体敲除(Adora1、Adora3)小鼠的体温,以研究体温降低的机制。正如先前数据所证实的,刺激A1腺苷受体(AR)通过外周肥大细胞脱颗粒、组胺释放以及中枢组胺H受体的激活诱导体温降低。相比之下,A2AR激动剂和AMP均通过作用于中枢引起体温降低。常用的选择性A2AR激动剂,包括N-环戊基腺苷(CPA)、N-环己基腺苷(CHA)和MRS5474,腹腔注射给药时通过A2AR和A3AR均能引起体温降低。脑室内给药、低外周剂量的Cl-ENBA [(±)-5'-氯-5'-脱氧-N-内-N-降冰片基腺苷] 或使用Adora3小鼠可实现对A3AR的选择性刺激。AMP刺激引起的体温降低可独立于A1AR、A2AR和肥大细胞发生。A1AR和A2AR激动剂以及AMP会引发调节性体温降低,其特征为总能量消耗下降、身体活动减少以及偏好较凉爽的环境温度,这表明体温设定点降低。禁食诱导的蛰伏状态既不需要A1AR也不需要A2AR。A1AR和A2AR激动剂以及AMP通过三种不同机制触发调节性体温降低。