He Xiao, Zheng Sining
Department of Mathematics, Dalian Minzu University, Dalian, 116600, People's Republic of China.
School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, People's Republic of China.
J Math Biol. 2017 Jul;75(1):239-257. doi: 10.1007/s00285-016-1082-5. Epub 2016 Dec 3.
In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To save the endangered prey species, some human interference is useful, such as creating a protection zone where the prey could cross the boundary freely but the predator is prohibited from entering. This paper studies the existence of positive steady states to a predator-prey model with reaction-diffusion terms, Beddington-DeAngelis type functional response and non-flux boundary conditions. It is shown that there is a threshold value [Formula: see text] which characterizes the refuge ability of prey such that the positivity of prey population can be ensured if either the prey's birth rate satisfies [Formula: see text] (no matter how large the predator's growth rate is) or the predator's growth rate satisfies [Formula: see text], while a protection zone [Formula: see text] is necessary for such positive solutions if [Formula: see text] with [Formula: see text] properly large. The more interesting finding is that there is another threshold value [Formula: see text], such that the positive solutions do exist for all [Formula: see text]. Letting [Formula: see text], we get the third threshold value [Formula: see text] such that if [Formula: see text], prey species could survive no matter how large the predator's growth rate is. In addition, we get the fourth threshold value [Formula: see text] for negative [Formula: see text] such that the system admits positive steady states if and only if [Formula: see text]. All these results match well with the mechanistic derivation for the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret Biol 314:106-108, 2012). Finally, we obtain the uniqueness of positive steady states for [Formula: see text] properly large, as well as the asymptotic behavior of the unique positive steady state as [Formula: see text].
在任何捕食者 - 猎物模型的反应 - 扩散系统中,物种的种群密度由它们之间的相互作用以及周围空间环境的影响共同决定。一般来说,当猎物的出生率过低、栖息地规模过小、捕食者增长过快或捕食压力过高时,猎物种群将会灭绝。为了拯救濒危的猎物物种,一些人为干预是有效的,比如创建一个保护区,猎物可以自由穿越边界,但捕食者被禁止进入。本文研究了一个具有反应 - 扩散项、Beddington - DeAngelis型功能反应和无通量边界条件的捕食者 - 猎物模型正稳态的存在性。结果表明,存在一个阈值[公式:见原文],它表征了猎物的避难能力,使得如果猎物的出生率满足[公式:见原文](无论捕食者的增长率有多大)或者捕食者的增长率满足[公式:见原文],则可以确保猎物种群的正性,而如果[公式:见原文]且[公式:见原文]足够大,则对于这样的正解需要一个保护区[公式:见原文]。更有趣的发现是,存在另一个阈值[公式:见原文],使得对于所有[公式:见原文]都存在正解。令[公式:见原文],我们得到第三个阈值[公式:见原文],使得如果[公式:见原文],无论捕食者的增长率有多大,猎物物种都能存活。此外,对于负的[公式:见原文],我们得到第四个阈值[公式:见原文],使得当且仅当[公式:见原文]时系统存在正稳态。所有这些结果与Geritz和Gyllenberg最近给出的B - D型功能反应的机理推导(《理论生物学杂志》314:106 - 108,2012)非常吻合。最后,我们得到了对于足够大的[公式:见原文]正稳态的唯一性,以及当[公式:见原文]时唯一正稳态的渐近行为。