Suppr超能文献

子宫平滑肌肉瘤与非典型平滑肌瘤的鉴别:定性磁共振成像特征的诊断准确性及纹理分析的可行性

Differentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture Analysis.

作者信息

Lakhman Yulia, Veeraraghavan Harini, Chaim Joshua, Feier Diana, Goldman Debra A, Moskowitz Chaya S, Nougaret Stephanie, Sosa Ramon E, Vargas Hebert Alberto, Soslow Robert A, Abu-Rustum Nadeem R, Hricak Hedvig, Sala Evis

机构信息

Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Eur Radiol. 2017 Jul;27(7):2903-2915. doi: 10.1007/s00330-016-4623-9. Epub 2016 Dec 5.

Abstract

PURPOSE

To investigate whether qualitative magnetic resonance (MR) features can distinguish leiomyosarcoma (LMS) from atypical leiomyoma (ALM) and assess the feasibility of texture analysis (TA).

METHODS

This retrospective study included 41 women (ALM = 22, LMS = 19) imaged with MRI prior to surgery. Two readers (R1, R2) evaluated each lesion for qualitative MR features. Associations between MR features and LMS were evaluated with Fisher's exact test. Accuracy measures were calculated for the four most significant features. TA was performed for 24 patients (ALM = 14, LMS = 10) with uniform imaging following lesion segmentation on axial T2-weighted images. Texture features were pre-selected using Wilcoxon signed-rank test with Bonferroni correction and analyzed with unsupervised clustering to separate LMS from ALM.

RESULTS

Four qualitative MR features most strongly associated with LMS were nodular borders, haemorrhage, "T2 dark" area(s), and central unenhanced area(s) (p ≤ 0.0001 each feature/reader). The highest sensitivity [1.00 (95%CI:0.82-1.00)/0.95 (95%CI: 0.74-1.00)] and specificity [0.95 (95%CI:0.77-1.00)/1.00 (95%CI:0.85-1.00)] were achieved for R1/R2, respectively, when a lesion had ≥3 of these four features. Sixteen texture features differed significantly between LMS and ALM (p-values: <0.001-0.036). Unsupervised clustering achieved accuracy of 0.75 (sensitivity: 0.70; specificity: 0.79).

CONCLUSIONS

Combination of ≥3 qualitative MR features accurately distinguished LMS from ALM. TA was feasible.

KEY POINTS

• Four qualitative MR features demonstrated the strongest statistical association with LMS. • Combination of ≥3 these features could accurately differentiate LMS from ALM. • Texture analysis was a feasible semi-automated approach for lesion categorization.

摘要

目的

探讨磁共振(MR)定性特征能否区分平滑肌肉瘤(LMS)和非典型平滑肌瘤(ALM),并评估纹理分析(TA)的可行性。

方法

这项回顾性研究纳入了41例术前接受MRI检查的女性患者(ALM = 22例,LMS = 19例)。两名阅片者(R1、R2)对每个病灶的MR定性特征进行评估。采用Fisher精确检验评估MR特征与LMS之间的相关性。计算四个最显著特征的准确性指标。对24例患者(ALM = 14例,LMS = 10例)在轴位T2加权图像上进行病灶分割后进行均匀成像的TA。使用Wilcoxon符号秩检验和Bonferroni校正预先选择纹理特征,并通过无监督聚类分析将LMS与ALM区分开来。

结果

与LMS最密切相关的四个MR定性特征是结节状边界、出血、“T2低信号”区域和中央无强化区域(每个特征/阅片者的p值≤0.0001)。当一个病灶具有这四个特征中的≥3个时,R1/R2分别达到了最高敏感性[1.00(95%CI:0.82 - 1.00)/0.95(95%CI:0.74 - 1.00)]和特异性[0.95(95%CI:0.77 - 1.00)/1.00(95%CI:0.85 - 1.00)]。LMS和ALM之间有16个纹理特征存在显著差异(p值:<0.001 - 0.036)。无监督聚类的准确率为0.75(敏感性:0.70;特异性:0.79)。

结论

≥3个MR定性特征的组合可准确区分LMS和ALM。TA是可行的。

关键点

• 四个MR定性特征与LMS的统计学关联最强。• ≥3个这些特征的组合可准确区分LMS和ALM。• 纹理分析是一种可行的半自动病灶分类方法。

相似文献

2
Differentiating leiomyosarcoma from leiomyoma: in support of an MR imaging predictive scoring system.
Abdom Radiol (NY). 2021 Oct;46(10):4927-4935. doi: 10.1007/s00261-021-03132-6. Epub 2021 Jun 1.
3
Smooth muscle tumours of the uterus: MR imaging malignant predictive features-a 12-year analysis in a referral hospital in Portugal.
Arch Gynecol Obstet. 2024 Apr;309(4):1551-1560. doi: 10.1007/s00404-023-07294-0. Epub 2023 Dec 6.
4
MRI screening for uterine leiomyosarcoma.
J Magn Reson Imaging. 2019 Jun;49(7):e282-e294. doi: 10.1002/jmri.26630. Epub 2019 Jan 13.
7
Molecular analyses of 6 different types of uterine smooth muscle tumors: Emphasis in atypical leiomyoma.
Cancer. 2014 Oct 15;120(20):3165-77. doi: 10.1002/cncr.28900. Epub 2014 Jul 1.
9
MRI, clinical, and radiomic models for differentiation of uterine leiomyosarcoma and leiomyoma.
Abdom Radiol (NY). 2024 May;49(5):1522-1533. doi: 10.1007/s00261-024-04198-8. Epub 2024 Mar 11.
10
Explorative Investigation of Whole-Lesion Histogram MRI Metrics for Differentiating Uterine Leiomyomas and Leiomyosarcomas.
AJR Am J Roentgenol. 2018 May;210(5):1172-1177. doi: 10.2214/AJR.17.18605. Epub 2018 Mar 16.

引用本文的文献

1
Challenges in Differentiating Uterine Mesenchymal Tumors-Key Diagnostic Criteria.
J Clin Med. 2025 Jul 1;14(13):4644. doi: 10.3390/jcm14134644.
4
Comparison of MRI imaging features to differentiate degenerating fibroids from uterine leiomyosarcomas.
Rare Tumors. 2025 Apr 11;17:20363613251327080. doi: 10.1177/20363613251327080. eCollection 2025.
5
6
Differentiation of uterine fibroids and sarcomas by MRI and serum LDH levels: a multicenter study of the KAMOGAWA study.
J Gynecol Oncol. 2025 Jul;36(4):e58. doi: 10.3802/jgo.2025.36.e58. Epub 2025 Apr 4.
8
Multiparametric quantitative magnetic resonance imaging of uterine fibroids for prediction of growth rate-a pilot study.
Quant Imaging Med Surg. 2024 Jul 1;14(7):4362-4375. doi: 10.21037/qims-23-1663. Epub 2024 Jun 20.
10
Uterine Leiomyosarcoma in a 22-Year-Old Young Woman: A Case Report.
Cureus. 2024 Jun 10;16(6):e62087. doi: 10.7759/cureus.62087. eCollection 2024 Jun.

本文引用的文献

5
Options on fibroid morcellation: a literature review.
Gynecol Surg. 2015;12(1):3-15. doi: 10.1007/s10397-015-0878-4. Epub 2015 Feb 7.
7
Clinical management of leiomyoma.
Obstet Gynecol Clin North Am. 2015 Mar;42(1):67-85. doi: 10.1016/j.ogc.2014.09.009. Epub 2014 Dec 5.
9
Uterine sarcomas: clinical presentation and MRI features.
Diagn Interv Radiol. 2015 Jan-Feb;21(1):4-9. doi: 10.5152/dir.2014.14053.
10
CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology.
Acad Radiol. 2014 Dec;21(12):1587-96. doi: 10.1016/j.acra.2014.07.023. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验